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With gratitude to Russo et
al. (including our Chair, Dr.
Vassilia Zorba)

Laser Ablation
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TARGET

If we introduce a second LIBS pulse at some
time after ablation, we call this “dual pulse
LIBS” (DP-LIBS)

If this second pulse is on resonance with an atomic transition of an atom/ion in
the plasma and it can form a second spark, we call this “resonance-enhanced

LIBS” (RELIBS)
[see Yip and Cheung SAB 2009 or Goueguel et al. JAAS 2010]

If this second pulse is on resonance with an atomic transition of an atom/ion in
the plasma and the pulse is very weak or unfocused, we call this (LIBS-LIF)
[see Hilbk-Kortenbruck et al. or Telle et al. SAB 2001]




Advantages of the Two-Beam Technigue

e Substantial improvement in plasma emission
from difficult targets (i.e. liquids)

e Significant reduction of LOD of trace analytes
— ppb concentrations;
— attomole, sub-fg mass limits

e Elimination of overlapping emission peaks in
dense spectra



Outline

e |Investigation of LIBS-LIF in low-pressure
lanthanide plasmas

e Investigation of RELIBS in atmospheric
pressure lanthanide plasmas

e Future plans for LIBS-LIF in
biomedical/biological specimens



Investigation of LIBS-LIF in low-pressure lanthanide plasmas

This work was motivated by a desire to measure absolute
transition probabilities in lanthanide ions using a laser-
induced plasma (laboratory astrophysics).

Initiated by Caleb Ryder
(PhD, 2012)

Concluded by Russell Putnam
(MSc, 2014)




Investigation of LIBS-LIF in low-pressure lanthanide plasmas
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Figure 4.3 A neutral neodymium LIBS spectrum with a gate delay of 3000 ns and gate width of 10000 ns. The majority of the neutral emission lines are
between 370 and 550 nm.



Investigation of LIBS-LIF in low-pressure lanthanide plasmas
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Investigation of LIBS-LIF in low-pressure lanthanide plasmas
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Investigation of LIBS-LIF in low-pressure lanthanide plasmas
Dependence on interpulse timing
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Investigation of LIBS-LIF in low-pressure lanthanide plasmas
Effect of LIF pulse energy and pumping transition
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Investigation of LIBS-LIF in low-pressure lanthanide plasmas
Things we cannot yet explain
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Investigation of RELIBS in atmospheric pressure lanthanide plasmas

To begin investigations in biomedical specimens at atmospheric pressure
we constructed a new system

Alignment HeNe

OPO

Lens system for beam shaping

Echelle
Spectrometer

355 nm pump

Digital Delay Generator ~ photodiode ()

Argon chamber

Nd:YAG LIBS Iaser] =

J

D Alignment HeNe




Investigation of RELIBS in atmospheric pressure lanthanide plasmas

355 nm OPO pump Echelle spectrometer/camera
OPO Photodiode for observing pulse timing
Timing control 1064 nm LIBS laser

Argon chamber The guy who made it all work



Investigation of RELIBS in atmospheric pressure lanthanide plasmas

27 LIBS pulse (RELIBS)

interpulse separation
ICCD Observation Window
(10 ps)
LIBS emission intensity
1ns 10 ns 100 ns 1us 10 ps 100 ps

Elapsed Time After LIBS Pulse Incident on Target

120 mJ 1064 nm laser creates first LIBS plasma.
2. OPO pulse is fired into the first plasma at varying times after the LIBS

pulse.
3. The resulting emission is observed for 10 microseconds after second

pulse.

—_—

Three experiments were performed:

« With OPO laser on Nd resonance

« With OPO laser slightly off-resonance
« With no LIBS pulse at all




Investigation of RELIBS in atmospheric pressure lanthanide plasmas

An important definition difference!

Magnosium From Goueguel et al. JAAS 2010 which is
I Mohamad Sabsabi’s group at NCR Canada.
Siz "/;:s’e’v .
r “The OPO laser, excites the Al neutrals...the

higher level of Mg is excited either by free
electrons having undergone superelastic
collisions with the excited Al neutrals (i.e.,
collisions in which the incident electrons gain
the excitation energy of the excited Al atoms)
ot s or by direct collisions of the Mg atoms with
Fig. 2 Partial Grotrian diagram for excitation of magnesium from the eXCited AI atomS."

selective excitation of aluminium atoms.

285.21 nm

396.15nm

2 po
PS.‘: 0.014 eV

J. Anal. At. Spectrom., 2010, 25, 635-644 | 637

“It is worth noting that selective excitation can also be performed using a single
laser pulse via the resonant laser ablation (RLA) scheme. In RLA the ablation
wavelength is tuned either on a resonant transition of the analyte, as in LIBS-

LIF, or of the matrix atoms, as in RELIBS.”



Investigation of RELIBS in atmospheric pressure lanthanide plasmas

Because our target is
pure Nd metal foil (shown
at right) there is no
matrix.

We are tuned into a
resonance of the analyte
with our second pulse
(which doesn't fit either
the definition of RLA or
RELIBS).

But it is tuned into the
dominant species in the
plasma, so we still refer
to it as RELIBS.




Investigation of RELIBS in atmospheric pressure lanthanide plasmas

Enhancement of LIBS Emission when OPO pulse is On-Resonance vs. Off-Resonance
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Delay Time (us)

Relative LIBS intensity is the sum of 22 ion lines and 22 neutral lines
(normalized to the 1064 nm LIBS emission)



Investigation of RELIBS in atmospheric pressure lanthanide plasmas

Enhancement of LIBS Emission when OPO pulse is On-Resonance vs. Off-Resonance

Ratio of on-resonance

to off-resonance lines
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Neutral: Average of 22 NdlI lines
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Resonance: Average of 8 Ndll lines, all originating
in upper state of resonance transition



Future plans for LIBS-LIF in biomedical/biological specimens
Salmon otoliths

Salmon otoliths (ear bones)

Salt/inorganic composition is reflective of growth environment — point sampling required

200 250 300 350 400 450 500 S50 EO0 650 700
wyavelength 5 nm

File: glaz=otolithtest Oacc2delay1 000gainSgw_03 esf Measured with: ARYELLE 200 342 026 /14  Date: 28022017 Time: 1116826217
Exposzure time: 901 ms; Horizontal Shift Speed: 1 MHz; AD-converter: 16 Bit; Averaging: 1; Delay: 2 BEEQS ps; Binning werticalhorizontal: 1M;




counts

Future plans for LIBS-LIF in biomedical/biological specimens
Fingernail zinc
Fingernail zinc is reflective of dietary zinc (related to neurodevelopment)
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v Apply OPO pulse at 589.6 nm (excellent OPO energy)
v" Pump atoms to the 2P, state
v" Observe change in 202 nm vs. 206 nm emission



Conclusions

e Demonstrated LIBS-LIF in low pressure lanthanide plasmas

» Elimination of overlapping lines observed
» LIF laser energy dependence observed
» Dependence on LIF laser wavelength unexplained

e RELIBS in atmospheric pressure lanthanide plasmas
significantly enhanced emission at longer times

» 15% improvement when on-resonance
» lons and neutrals enhanced identically
» Decay of RELIBS plasma is on a different time scale

e System is in place to start investigating biomedical/biological
specimens
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