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The BIOMAS Project:
Bacterial Identification by Optical, Molecular, and Atomic Spectroscopy



there is an urgent need right now in the military, civilian 
(hospital, food processing, environmental), and first 
responder communities for a “…rapid point-of-care 

(multiplex?) diagnostic for disease-causing pathogens.”
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How do we identify bacteria?

4 ways
• genetic
• serological (antigenic)
• microbiological
• compositional (LIBS)



genetic
• PCR (polymerase chain reaction)
• (random primed) RAPID-PCR
• FISH (fluorescence in situ

hybridization) 

requires
• a priori knowledge of genetic sequence 

(16s RNA gene is conserved in most)

drawbacks
• amplification time (multiple generations needed) 
• nonspecific reactivity
• still need to do gel electrophoresis
• very contamination sensitive



serological
• immunoassays
• microwell devices
• ELISA (enzyme-linked immunosorbent assay )
• fluorescently labeled antibody techniques
• MEMS

requires
• a priori knowledge of serology 

(surface antigens)
drawbacks
• any mutation (common) undetectable 
• antibodies are not stable (shelf-life)
• consumables
• binding affinities may be low



microbiological
• culturing and colony counting
• phenotyping
• sensitivity to immunochemicals
• Gram staining
requires
• time
• expertise
• LOTS of supplies
• a priori clinical knowledge (case-history)
drawbacks
• slow/labor intensive
• requires experts



compositional
• Raman
• Mass-spectrometry
• LIBS

requires
• no a priori knowledge of serology (surface antigens)
• no a priori knowledge of genetic sequence
• no consumables (hopefully)
• no expertise

• Raman
• Mass-spectrometry
• LIBS

drawbacks
• sensitivity (no amplification)
• hardware probably expensive (relative)
• specificity?



EMMA: Elemental Multivariate 
Microbiological Analysis 

• utilizes laser-induced breakdown spectroscopy 
(LIBS) to measure the unique atomic or elemental
composition of bacteria

Nd:YAG laser 
(1064 nm, 8 ns)

spectrometer

Laser-Induced 
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Spectroscopy

LIBS Spectrum is like a Bar Code- Unique for Each Sample



how we did it…
10 microliter of 
bacteria pellet

about 500-1500 
bacteria per 
sampling location

E. coli from liquid 
specimen.  
Centrifuged than 
supernatant 
removed

bacto-agar (99% 
water)
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• advanced signal-
processing statistical 
techniques 
(“chemometrics”) 
classify/identify the 
unknown target on the 
basis of its unique 
atomic signature

• concentrations of 
elements (or ratios of 
concentrations) 
become independent 
variables in a 
chemometric 
multivariate analysis



things that make EMMA 
technology unique

• speed / portability / durability (ruggedness)
– “rapid point-of-care diagnostic…”

• lack of complicated sample preparation
• no expertise required
• no genetic or antigenic precursors (consumables) 

necessary
• same technology / hardware useful for explosives, 

chemical, other threats (CBRNE capable)
• capability of sensor fusion



Does it work?  YES!
• Intensity of lines, 

ratios of intensities 
used in a statistical 
multi-variate analysis

• Discriminant function 
analysis (DFA)
– principal 

component 
analysis (PCA)

– partial least 
squares –
discriminant 
analysis (PLS-DA)

– linear discriminant 
analysis (LDA)
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The Wayne State Team has 
already demonstrated…

EMMA spectral fingerprint is:
– growth-medium independent
– independent of state of growth (how “old” the 

bacteria are)
– independent of whether the bacteria are live 

or dead (or inactivated by UV light)
– obtainable even when other types of bacteria 

or contaminants are present (mixed samples)
– capable of strain discrimination
– obtainable from about 500 bacteria

6 publications in Applied Physics Letters, Journal of Applied Physics, Applied Optics, and 
Spectrochimica Acta B



“Mixed” Samples

decreasing M. smegmatis 
concentration

1: pure M. 
smegmatis6: pure E. coli

• Mixtures of known mixing fraction 
were prepared from suspensions M. 
smegmatis and E. coli C. 

• Six separate mixtures were prepared 
with a ratio M. smegmatis to E. coli C 
given by M1-x:Cx with x = 0.0, 0.1, 0.2, 
0.3, 0.5, 1.0. 

• Multiple 1.5 mL tubes of these 
mixtures were prepared, thoroughly 
agitated via vortex mixing, then 
centrifuged for 3 minutes at 5000 
rev/min.  

Classification Results Category # of Spectra 
M. smegmatis E. coli S. viridans 

100% M. smegmatis, 0% E. coli 21 100% 0% 0% 
90% M. smegmatis, 10% E. coli 20 100% 0% 0% 
80% M. smegmatis, 20% E. coli 16 100% 0% 0% 
70% M. smegmatis, 40% E. coli 21 76% 24% 0% 
50% M. smegmatis, 50% E. coli 19 47% 53% 0% 
0% M. smegmatis, 100% E. coli 25 0% 100% 0% 
 



“Dirty” samples

S. viridans
S. epidermidis: H2O

S. epidermidis: urine

E. coli

• Samples of Staph. epidermidis were 
prepared in DI water and sterile urine.

• Samples were collected and tested 
via LIBS with NO WASHING.

• LIBS spectral fingerprint from urine-
exposed bacteria were identical to 
water-exposed bacteria.

• EMMA correctly classified 100% of 
the urine-exposed bacteria as being 
consistent with S. epidermidis



LIBS intensity linearly dependent 
on number of bacteria

• Samples of E. coli with different 
titer tested on agar.

• Each data point is the average of 5 
sampling locations.

• As expected, spectra demonstrate 
a linear dependence with cell 
number.

• All spectra were 100% correctly 
identified (specificity not dependent 
on number of cells).

• Suggests an antibiotic resistance 
test?
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what must we do to make LIBS a 
clinical tool?

Develop protocols for clinical sample preparation 
(blood, urine, sputum)

• isolation
• concentration under the laser focus

solutions
1. differential centrifugation
2. filtration (sequential?)
3. optical trapping / separation
4. microfluidic separation
5. antibody isolation/phage display technology (consumables!)



Microfluidic separation/concentration
(Translume, Inc. Ann Arbor, MI)

laser trap

bacteria 
only

optical trap-based 
separation of 
heavier cells from 
lighter cells



Microfluidic separation/concentration
(Translume, Inc. Ann Arbor, MI)

hydrodynamic (microfluidic) 
separation of heavier cells 
from lighter cells

monolithically fabricated 
devices in glass



Filtration

10 mL of a 
suspended 
bacterial culture 
pushed through a 
0.22 μm cellulose 
(carbon) Millipore 
filter



Conclusions
• All EMMA experiments to date have successfully shown 

the utility of LIBS to identify bacterial samples in a variety 
of growth conditions, in mixed samples, in dirty samples, 
etc.

• We are ready to move to testing real “clinical” type 
samples through our in-place organizational structure, 
which combines expertise in hardware development, 
software development, microbiological handling, and 
LIBS development.

• Early results show LIBS can be combined with Raman 
for improved accuracy of identification: “sensor fusion.”



My students

My funding…?


