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A B S T R A C T   

The presence of bacterial cells from three species has been detected in clinical specimens of human urine using 
laser-induced breakdown spectroscopy (LIBS) by using a partial least squares discriminant analysis (PLS-DA) of 
360 spectra obtained from 12 specimens of infected urine and 239 spectra obtained from eight specimens of 
sterile urine. Nominally sterile urine specimens obtained from four patients at a local hospital after being 
screened negative for the presence of bacterial pathogens were spiked with known aliquots of Escherichia coli, 
Staphylococcus aureus, and Enterobacter cloacae to simulate clinical urinary tract infections. Fifteen emission line 
intensities measured from the LIBS spectra and 92 ratios of those line intensities were used as 107 independent 
variables in the PLS-DA for discrimination between bacteria-containing specimens and sterile specimens. The 
PLS-DA models possessed a 98.3% sensitivity and a 97.9% specificity for the detection of pathogenic cells in 
urine when single-shot LIBS spectra were tested. To increase the signal to noise ratio, thirty spectra acquired from 
a single specimen were also averaged together and the averaged spectra were used to construct a model. When 
each averaged spectrum was withheld from the model individually for testing, the diagnostic test possessed a 
100% sensitivity and a 100% specificity for the detection of bacterial cells in urine, although the number of test 
spectra was necessarily reduced. 

The entire LIBS spectrum from 200 nm – 590 nm was input into an artificial neural network analysis with 
principal component analysis pre-processing (PCA-ANN) to diagnose the bacterial species once detected. This 
PCA-ANN test possessed an overall sensitivity of 97.2%, an overall specificity of 98.6%, and an overall classi
fication accuracy of 97.9% when using 80% of the data to build a model and withholding 20% for cross- 
validation testing. The PCA-ANN was also performed on each of the 12 bacteria-containing filters individu
ally, using the other 11 filters to build the model. The average sensitivity of this test, calculated by averaging the 
sensitivities measured for each of the three bacterial species, was 70.9% and the average specificity was 85.5%. 
Based on these results, the average classification accuracy for the test when used to discriminate between the 
three microorganisms was 80.6%. These results indicate the potential usefulness of LIBS for rapidly detecting and 
possibly diagnosing urinary tract infections in a clinical setting.   

1. Introduction 

Hospital acquired infections (HAI), or nosocomial infections, affect 
millions of people a year and are often antibiotic resistant, causing them 
to be one of the most common complications associated with hospital 
care [1]. Nosocomial infections can result from open surgical sites, 
catheters, or intubation with a ventilator and because of this, the most 

common infections are urinary tract infections (UTI), surgical infections, 
blood-stream infections (septicemia), and lower respiratory infections 
(pneumonia). Nosocomial infections are one of the leading causes of 
death and hospitals must screen patients for the presence of any noso
comial infection before discharging them [2]. The necessity of these 
screening tests requires the implementation of a rapid, sensitive, and 
specific diagnostic test capable of high-throughput with very low turn- 
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around time. This work will focus specifically on the development of a 
test suitable for detecting and diagnosing UTI using the technique of 
laser-induced breakdown spectroscopy (LIBS). 

UTI are one of the most common infections in adult women, with up 
to 50% of women having experienced at least one UTI in their lifetime 
and upwards of 10% of women experiencing at least one UTI annually 
[3]. In 2007, UTI resulted in approximately 8.6 million health care visits 
in the United States with an estimated cost of 1.6 billion US dollars [4]. 
In addition to the prevalence in the population, UTI are also the most 
common nosocomial infection, with up to 80% of hospital-acquired UTI 
associated with the use of a bladder catheter [2]. Even a single cathe
terization can lead to UTI due to contamination of the catheter tip [5]. 
The gold standard for the diagnosis of UTI is a bacteriological urine 
culture, which must be performed shortly after acquiring the sample to 
avoid growth of other organisms [6]. Unfortunately, this culturing is 
often time consuming, costly, and is not capable of detecting all species 
of bacteria [7]. The threshold for the diagnosis of an active UTI is 
traditionally the measurement of 105 colony-forming-units (CFU) per 
mL of sample, but use of this number can result in significant rates of 
false negatives, with sensitivities possibly as low as 50% in some cases 
[8]. Complicating matters further, the prevailing understanding until 
very recently was that urine is a completely sterile fluid, but recent 
studies have called this into question stating that female patients contain 
bacterial colonies in the bladder [9]. This increases the need for a highly 
sensitive and specific test not just for detecting UTI, but also diagnosing 
the species of bacteria present in the urine to discriminate a patient's 
normal urinary microbiota from the pathogens associated with UTI. 

The use of laser-induced breakdown spectroscopy for the detection 
and identification of bacterial pathogens has been well documented 
[10–13]. However the use of LIBS to detect or diagnose bacteria in urine 
has not been well studied [14]. Some authors have investigated the use 
of LIBS to investigate the chemical composition of urinary calculi in 
order to understand their formation and pathogenesis [15–17]. The 
ablation of the stony calculi presents a matrix more amenable to laser- 
ablation than the ablation of the liquid urine itself. Unfortunately, 
literature describing the use of LIBS for the direct analysis of urine 
specimens is also scant, with studies reported for the detection of cesium 
and the identification of diabetes mellitus [18,19]. 

This work describes preliminary studies investigating whether LIBS, 
when paired with a suitable chemometric or machine learning analysis, 
could be used as a point-of-care diagnostic technique directly on a fluid 
such as urine to test for the presence of UTI. The speed and specificity 
previously demonstrated by a LIBS-based diagnostic could aid in deliv
ering more targeted treatment to patients which would reduce the over- 
use and abuse of broad-spectrum antibiotics in treating non-nosocomial 
UTI [20]. As well, the use of LIBS for screening patients before discharge 
from the hospital would improve the efficiency of the process, reducing 
time and the need for resources, while also freeing up much-needed 
hospital beds. 

2. Materials and methods 

2.1. Urine specimens 

Sterile urine was provided by the pathology lab at the Windsor 
Regional Hospital for LIBS testing. All studies were done in accordance 
with the requirements of both the University of Windsor and Windsor 
Regional Hospital Research Ethics Boards. Specimens were completely 
anonymized prior to transfer and no information concerning patient 
identity, background, or demographics was provided. Such studies are 
classified as specimen transfers and are exempted from requiring a 
Research Ethics Board certificate according to both institutions. Only 
urine specimens that had already tested negative for bacterial infection 
were provided in these preliminary experiments and no other informa
tion of any sort was provided with the specimens. Urine specimens from 
four different patients were characterized to account for differences in 

patient physiology. 
All urine specimens had typically been held by the hospital for at 

least five days before transfer for LIBS testing to allow for a negative 
bacterial culture result. The urine samples were stored in a refrigerator 
at 4 ◦C prior to testing. At the time of LIBS testing the urine specimens 
were anywhere from a week to several weeks old and it is possible that 
the LIBS spectra obtained from older specimens may not be represen
tative of completely fresh specimens. Over time solute can coagulate and 
settle out of solution, however it is not thought this is a significant 
process from visible inspection of the specimens. All specimens were 
vortex-mixed prior to handling to insure the redistribution of any sus
pended particles. The diversity that was introduced by the use of spec
imens that were not the same age strengthens the conclusions of the 
work, as it served to increase the scatter in the data, which would be the 
realistic situation if the test were used to screen specimens from hun
dreds or thousands of unique patients. As the number of patient sources 
for the specimens utilized in this study was small, increasing the di
versity in the collected data helped to simulate a more realistic model 
training set. No attempt was made in this study to analyze recently- 
obtained urine specimens from human participants. 

2.2. Bacterial LIBS preparation 

All urine specimens both with and without bacteria were prepared 
for LIBS testing by filtering and concentrating the fluid sample at the 
center of a nitrocellulose filter using a custom made centrifuge tube 
insert with an integrated concentration cone. This method for concen
trating bacteria in fluid specimens at the center of a disposable filter has 
been described at length previously [21–23]. To achieve this concen
tration and deposition, a 3D-printed centrifuge insert was disassembled 
and a 9.5 mm diameter 0.45 μm pore size nitrocellulose membrane filter 
(HAWP04700, Millipore Inc.) was placed on the filter holder as shown in 
Fig. 1a. This pore size has been found to be adequate to catch the ma
jority of bacterial cells during centrifugation. The centrifuge insert was 
then reassembled (Fig. 1b) and the aluminum concentration cone with a 
1 mm open aperture at the apex (Fig. 1c) was placed into the insert. This 
cone attempts to force the fluid and bacteria to pass through the central 
1 mm of the filter during centrifugation, concentrating the cells in that 
spot. The insert was then placed inside a 10 mL capacity centrifuge tube 
equipped with a hinged plastic cap, as shown in Fig. 1d. The pressure of 
the hinged cap acted to push the cone firmly into the nitrocellulose filter, 
providing a tight contact surface which retained most of the bacterial 
cells in the 1 mm deposition area in the center of the filter. 

All urine specimens were vortex-mixed for several seconds and then 
100 μL of urine was pipetted directly into the cone. The hinged plastic 
cap was then closed, sealing in all the liquid (Fig. 1e) and the entire 
assembly was centrifuged (PowerSpin BX C884, Unico) at 5000 rpm 
(2500 g's of force) for 5 min to deposit the urine on the filter. After 
centrifugation, the filter was removed from the centrifuge insert and 
mounted on a piece of steel with double sided sticky tape to hold it flat. 
This steel mounting piece was then inserted into the LIBS apparatus. 

Colonies of Escherichia coli, Staphylococcus aureus, and Enterobacter 
cloacae were cultured on appropriate growth media and then removed 
from the solid medium plates. After triple washing to remove any re
sidual nutrient media, the bacterial colonies were suspended in ultra- 
pure megohmic water to reduce any background elemental contribu
tions. Samples were assayed using optical densitometry to insure 
approximately equal concentrations of 108 colony forming units (CFU) 
per cubic centimeter of water were prepared for each species of bacteria. 
In most of the experiments described below dilutions of these standard 
suspensions were used to reduce the concentration to approximately 2 
× 107 CFU/mL. 

To create urine specimens that would simulate a UTI, the nominally- 
sterile urine specimens were ‘spiked’ with one of the bacterial species 
listed above. This was accomplished by pipetting bacteria and urine into 
the same cone to create a mixture of bacteria and urine. The centrifuge 
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insert was re-assembled including filter and cone and 100 μL of a bac
terial suspension was pipetted into the cone. Then, 100 μL of a sterile 
urine sample was pipetted into the same cone. This effectively creates a 
mixture of bacteria in urine. The apparatus was then centrifuged at 
5000 rpm for 5 min just as the control samples were. After centrifuga
tion, all of the bacterial cells in the initial urine suspension were 
deposited in a fairly uniform layer inside of a circular area with diameter 
of 1 mm, achieving a cell surface density of approximately 2.5 × 108 

cells/cm2. This deposition was confirmed by scanning electron micro
scopy and optical microscopy. The filters were then removed for LIBS 
testing. 

2.3. LIBS apparatus 

Once transferred to the LIBS ablation chamber, 30 single-shot LIBS 
spectra were acquired from the urine or bacteria/urine deposition. On 
one filter only 29 usable spectra were obtained. The ablation craters 
were approximately 75 μm in diameter and the spacing between adja
cent ablation locations was approximately 150 μm. Knowing the bac
terial cell surface density and the laser ablation spot size allows a 
calculation of approximately 11,000 cells ablated per laser shot, which is 
a low and clinically relevant number of cells for a common UTI. Depo
sition filters prepared in this way were ablated in an argon gas envi
ronment with an argon purge flow into the chamber of approximately 
567 L/h (20 standard cubic feet per hour). The laser used for ablation 
was an Nd:YAG operating at 1064 nm (Quanta Ray LAB-150-10, Spectra 
Physics) with 10 Hz repetition rate, 10 ns pulse duration, and a pulse 
energy of 8 mJ/pulse at the target. The light from the plasma was 

collected by two matching parabolic aluminum mirrors (f = 5.08 cm, φ 
= 3.81 cm) and directed into a 1 m steel-encased multimodal optical 
fibre (numerical aperture = 0.22, core diameter = 600 μm). 

The light from the plasma was dispersed by an echelle spectrometer 
(ESA 3000, LLA Instruments, GmbH) and detected by an intensified 
charge-coupled device (ICCD) camera. The echelle grating used in this 
experiment allowed a broadband spectrum from 200 to 840 nm to be 
collected with approximately 12 pm resolution in the ultraviolet 
wavelength range. The ICCD utilized a Kodak camera with a 2.54 cm ×
2.54 cm CCD chip (1064 pixels by 1064 pixels, pixel size of 24 μm2). The 
spectrometer was controlled by ESAWIN v3.20 software to set the delay 
time for data acquisition relative to the laser pulse (called the gate delay, 
τd) at 2 μs and the duration of spectral data acquisition (which is the 
camera exposure time, called the gate width, τw) at 20 μs for all bacterial 
experiments. This software also controlled the firing of the Nd:YAG laser 
Q-switch to provide nanosecond timing control. 

2.4. Computerized data analysis: PLS-DA 

The ESAWIN software measured the integrated area under the 
background-subtracted spectrum of 15 atomic/ionic emission lines from 
carbon, phosphorus, magnesium, calcium, and sodium. These 15 lines 
are shown in Table 1 and represent the elemental composition of the 
urine, bacterial cells, and the nitrocellulose filter medium. These lines 
were chosen specifically because they were reproducibly and consis
tently observed. No lines from any other elements (except for Stark- 
broadened hydrogen emission lines) were reliably observed. 

To create more independent variables for the chemometric analysis 

Fig. 1. The disassembled 3D printed centrifuge insert used for bacterial separation fitted with a 9.5 mm diameter disposable nitrocellulose membrane filter (a). The 
insert reassembled with the filter sealed in between the two sections (b). The aluminum cone with a 1 mm diameter aperture in the apex used to concentrate the 
bacteria in the center of the filter (c). The assembled apparatus inside a centrifuge tube prior to addition of urine (d) and the apparatus with the centrifuge tube cap 
closed after the addition of urine prior to centrifugation (e). 
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of the spectra, ninety-two ratios of those line intensities were used with 
the 15 line intensities to create 107 independent variables for use in a 
partial least squares discriminant analysis (PLS-DA). The intent of the 
PLS-DA was to develop a model capable of discriminating between 
spectra obtained from sterile control urine samples and those spiked 
with bacteria. The identification of these 107 ratios is provided in the 
Supplementary Material Tables S1 and S2. The construction of simple 
ratios from the measured emission line intensities follows an approach 
applied successfully by Gottfried et al. for the discrimination of highly 
similar LIBS spectra acquired from explosive residues [24,25]. The 
choice of which lines to use and which ratios to construct to provide 
optimal spectral discrimination when using a chemometric algorithm 
such as PLS-DA or discriminant function analysis (DFA) was investigated 
by us previously in a non-urine bacterial system [26]. What was 
concluded in that study and in the other references was that having more 
independent variables allowed for more variance in the data to be 
expressed, which resulted in a better statistical classification of un
known spectra. These studies demonstrated that this approach was 
statistically superior to alternate approaches that did not combine the 
measured line intensities into ratios or approaches which attempted to 
combine all the emission lines measured from a given atomic species 
into one independent variable representing the overall intensity of that 
atomic species. Importantly, Putnam et al. observed that ratios should 
not be constructed blindly, but that that prior knowledge of which 
elemental lines contributed most significantly to accurate classification 
would allow the construction of the most appropriate ratios for accurate 
classification [26]. 

Once defined as belonging to one of two classes (either sterile control 
urine or urine with bacteria) the 107 independent variables from each 
spectrum were input into a PLS-DA algorithm implemented by the 
PLS_toolbox v.8.7.1 (Eigenvector Research, Inc.) running under Matlab 
2016b v.9.1 PLS-DA is a variation of the partial least squares regression 
(PLS) algorithm. PLS regression constructs a linear regression model to 
predict a dependent variable from a set of known independent variables 
and in the specific utilization of PLS-DA, the dependent variable is 
actually the class (or identity) of the test data set, rather than a con
centration or some other parameter. PLS-DA constructs a small number 
of latent variables (LVs) from the independent variables and these LVs 
are used to calculate the most probable class membership of an unknown 
test data set. In the PLS_toolbox, the number of LVs can be adjusted 
manually or can be assigned automatically by the program. For the 
bacterial discrimination described here, four or five LVs were suggested 
by the software and were sufficient to allow discrimination while 
avoiding overfitting of the data. The 107 variable datasets were always 
pre-processed by mean-centering and setting the standard deviation of 
each of the column of variables to one, a standard pre-processing step 

the PLS_toolbox refers to as “auto-scaling.” 
PLS-DA was also performed on data sets where all the spectra on a 

given filter were averaged together to increase the signal to noise ratio of 
the data. This averaging was achieved in two ways. In the first method, 
the average of each line was calculated in Microsoft Excel after the 
ESAWIN software had measured and exported the intensities of the 15 
emission lines. In the second method, the CCD camera images were 
averaged in the ESAWIN software prior to the measurement of the 15 
line intensities. In both these analyses, the 107 independent variable 
were again created from the averaged spectrum. These tests necessarily 
possessed far fewer data, only 12 bacterial spectra and 8 control urine 
spectra, as only that many filters were tested. Due to the improved 
quality of the data and the reduction in the number of datasets, typically 
only one LV was required for complete discrimination of the urine with 
bacteria from the sterile urine, accounting for approximately 85% of the 
variance in the data. 

2.5. Computerized data analysis: PCA-ANN 

To classify the three bacterial species present in the urine, an arti
ficial neural network (ANN) was trained on a subset of the entire LIBS 
spectrum from 200 nm – 590 nm. The ANN was developed in Python 
with the libraries Pandas, Numpy, Tensorflow, keras, and Scikit-Learn and 
was run on a standard desktop PC using an Intel i9 CPU. To reduce the 
dimensionality of the data, the 42,000 variable spectra were first pre- 
processed with an unsupervised principal component analysis (PCA). 
Others have reported improved results when conducting a principal 
component analysis on LIBS data first and using the principal compo
nent scores as independent variables in an ANN [27,28]. The number of 
principle component scores retained from the PCA becomes the new 
number of input nodes in the ANN algorithm, significantly reducing 
training time. A PCA algorithm was developed in python using the li
braries sklearn.decomposition, pandas, numpy, and mpl_toolkits. Ten PC 
scores which captured approximately 99% of the variance were kept for 
use in the ANN. Initially the data was mean-centered prior to PCA by 
calculating the mean of the data across each wavelength and subtracting 
the mean from each data point of the same wavelength. While mean- 
centering provided good results, they were no better than the results 
without the use of pre-processing. For all the results provided below the 
spectra data were not pre-processed prior to PCA. 

An ANN optimization algorithm was developed to optimize a number 
of parameters in the ANN including the patience and number of hidden 
nodes utilized during algorithm training. The patience is a parameter 
that assists in the convergence of the algorithm by determining when the 
iterations of the model construction should cease if no improvement of 
the model performance can be achieved. The hidden nodes are the actual 
“neurons” connected in the neural network where the weighted input 
variables into the algorithm (the ten PC scores) are mapped onto the 
desired output variables (the bacterial classes.) This algorithm calcu
lated the average sensitivity and specificity of the model for each value 
of patience and number of hidden nodes, allowing the algorithm pa
rameters to be tailored to the bacterial spectral data. In all analyses only 
one hidden layer was used in the ANN. Before the data was classified 
with ANN, the program randomly split all the data up into a training set 
and a testing set. The testing set was created by removing 20% of the 
spectra from the data set. Typically in ANN, the larger the training set 
the better the performance, thus the use of this 80:20 cross-validation 
scheme. To represent a more realistic test, the data were tested in an 
“external validation” scheme, where all of the shots on a single filter 
were withheld entirely from the model and used as test data. Twelve 
individual tests (four filters from each of the three bacterial species) 
were then performed to obtain the classification accuracy for each 
species of bacteria. In addition, each test was repeated ten times in a row 
to account for variations in the convergence of the ANN. Variations in 
repeated results were observed due to the sensitivity of the ANN model 
construction to its initialization, and this is described in Section 3.4. The 

Table 1 
Identification and wavelengths of the 15 strong 
emission lines consistently observed in the spectra 
of urine and urine spiked with bacteria.  

Species Wavelength nm 

C I 247.856 
P I 213.618 
P I 214.914 
P I 253.560 
Mg II 279.079 
Mg II 279.553 
Mg II 279.806 
Mg II 280.271 
Mg I 277.983 
Ca II 317.933 
Ca II 393.366 
Ca II 396.847 
Ca I 422.673 
Na I 588.995 
Na I 589.593  
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sensitivities and specificities for each filter and species were constructed 
by averaging the results of the ten repetitions for each filter. Thus 120 
PCA-ANN tests were performed on the data. Lastly, to demonstrate that 
the ANN was not fitting noise, experiments were performed where the 
spectral identities were randomized after PCA but before the PC scores 
were input to the ANN. During these tests no classification of the spectra 
was possible due to the lack of any variance between the now- 
randomized groups. Further details of the PCA-ANN are provided else
where [29]. 

3. Results and discussion 

Fig. 2 shows a spectrum of E. cloacae bacteria deposited in urine with 
a spectrum of urine overlaid to show the difference between the two. 
Although qualitatively similar, calcium line intensities in the bacterial 
spectra were consistently higher than in the spectra from urine alone, 
magnesium line intensities were also consistently higher, and in this 
example, the sodium emission intensity was stronger in the control 
spectrum (although this was not consistently true for all combinations of 
specimens). Most notably, the phosphorus line in the spectra from 
bacteria in urine was larger than in the spectra from control urine, which 
served to indicate the presence of bacteria. The argon emission peaks 

originate from the presence of the buffer gas used during ablation, and 
were ignored. The strong carbon emission present in both spectra is 
predominantly, although not entirely, due to ablation of the nitrocel
lulose filter medium upon with the fluid specimens are deposited [30]. 
In Fig. 2 each spectrum is the average of thirty laser shots taken across an 
entire filter to increase the signal to noise of the spectra to allow a clear 
presentation of all the significant spectral features. 

Despite the differences in emission intensities in the two spectra, the 
qualitative similarity of the spectra necessitated the use of the PLS-DA 
for discrimination, as described in Section 2.4. Other than the very 
weak phosphorus emission, no new lines were observed or measured in 
the bacterial spectra which would serve as a rapid and easy marker for 
the presence of bacteria. As the bacterial titer is further decreased, the 
quantitative difference between these two types of spectra will also 
decrease, requiring a multivariate analysis like PLS-DA that considers 
the relative intensities between all the independent variables, not just 
the intensity of a single emission line. In a similar manner, all of the 
bacterial spectra appear to be highly similar to each other, so no figure 
comparing the spectra from the various bacterial species is presented 
here. The bacterial spectrum in Fig. 2 is representative of the appearance 
of all the spectra collected. It is this high degree of similarity amongst 
the spectra from the various classes that requires the use of a 

Fig. 2. Overlaid spectra of Enterobacter cloacae bacteria mixed with urine (black) and sterile urine (red). The spectra were dominated by the emission from calcium, 
magnesium, sodium, and carbon, shown below the full spectrum. Lines of phosphorus, although small, were consistently observed. Phosphorus emission (as shown in 
the inset) was never observed in the absence of bacteria, making it an indicator of the presence of bacterial cells. Argon was observed from the buffer gas used during 
ablation and was not included in any chemometric analysis. Specific emission line identities used in the analysis of these spectra are provided in Table 1. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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multivariate analysis even more sophisticated than the PLS-DA and 
which motivated the initial investigation into the use of a PCA-ANN 
analysis of the entire LIBS spectrum. While not obvious to the eye, the 
subtle and reproducible differences in the spectra can be reliably iden
tified and utilized by the model constructed in the ANN. The necessity of 
this machine learning approach (using e.g. an artificial neural network, 
a support vector machine, gradient boosting, k-nearest neighbors anal
ysis, random forest, etc.) has been widely discussed for the analysis of 
LIBS data and is particularly important for the discrimination of bio
logical targets which tend to exhibit a high degree of self-similarity 
[31,32]. 

3.1. PLS-DA on single-shot spectra 

The PLS-DA was performed as described in Section 2.4 on the four 
filters of S. aureus, four filters of E. coli, four filters of E. cloacae, and eight 
filters of unspiked urine. A total of 20 tests were conducted. In each test 
all the spectra obtained from a single filter were withheld and tested 
against a model constructed from the remaining 19 filters classified as 
either “bacteria” or “no bacteria.” After recording the classification re
sults of the 30 spectra from this withheld filter, this filter was then 
reinserted into the dataset, a different filter was withheld for testing, and 
a new model constructed. This process was repeated sequentially until 
each filter had been tested individually against a new model constructed 
from all other filters. The results of these tests are show in in Table 2. 
Sterile Urine Filter #5 only had twenty-nine useable spectra, which in no 
way impacted the results. 

For the 12 filters with bacteria-containing urine depositions, the 
fraction of the 30 single-shot LIBS spectra that classified as bacteria were 
used to calculate a sensitivity for that filter. The measured sensitivity for 
each filter is given in Table 2. The sensitivity is the fraction of spectra 
from a bacteria-positive sample that are classified by the model as a 
positive test result, which is called a true positive. The optimal medical 
test would have a sensitivity, or true positive rate, of 100%. 

Because the 12 bacteria-containing filters were all positive for bac
teria, no rates of false positives from these data could be used to 
calculate a specificity. The results of the 8 sterile urine filters were used 
to calculate the test's specificity. For the 8 filters with sterile urine de
positions, the fraction of the 30 single-shot LIBS spectra that classified as 
urine (not bacteria) were used to calculate a specificity for that filter. 
The measured specificity for each control urine filter is given in Table 2. 
The specificity is the true negative rate of the test and is the fraction of 
the spectra from bacteria-negative filters that were classified by the 
model as a negative test result. The optimal medical test would have a 
specificity of 100%, meaning that no bacteria-negative samples would 
be diagnosed as bacteria-positive. 

Averaging the measured sensitivities for the 12 bacteria filters yiel
ded an overall sensitivity of 98.3% for this urine test and averaging the 
specificities for the 8 urine filters yielded an overall specificity of 97.9% 
when approximately 11,000 bacterial cells were ablated per laser shot. 

3.2. PLS-DA on averaged spectra 

Table 2 also shows the results of PLS-DA when all the spectra on a 
given filter were averaged together to increase signal to noise as 
described in Section 2.4. Both methods of averaging the spectra yielded 
a sensitivity of 100% and a specificity of 100%, with no filters being 
misclassified. Due to the averaging together of multiple spectra, this 
improved result now occurs due to the fact that approximately 330,000 
total bacterial cells were ablated for each test. This is still a clinically 
relevant number of cells. Although there were far fewer data in the 
model and thus far fewer results due to the averaging, it is believed that 
this way of analyzing the data will ultimately be of clinical utility, as the 
specimen contributed by a single patient must yield a single diagnosis to 
the physician, not thirty, to allow the initiation of appropriate therapy. 
The best method for interpreting and relaying the results of tests such as 

those presented in Table 2 is still being studied, however it is apparent 
that the analysis of single-shot spectra and averaged spectra both can 
provide high sensitivities and specificities when this number of bacterial 
cells is analyzed. 

3.3. PCA-ANN on full-spectrum data: 80:20 cross-validation 

Table 3 shows the results of the full-spectrum PCA-ANN performed 
on all of the spectra obtained from the 12 filters with bacteria-containing 
urine utilizing an 80:20 cross-validation as described in Section 2.5. No 
sterile urine spectra were included in this model. In this table, sensitivity 

Table 2 
The results of 20 PLS-DA tests performed on filters of bacteria-containing urine 
and sterile urine.  

Filter Identity Sensitivity 
% 

Specificity 
% 

Averaged 
Result 

Averaged 
Result    

(Excel)a (ESA)b 

S. aureus + Urine 
Filter #1 100 – Bacteria Bacteria 

S. aureus + Urine 
Filter #2 

100 – Bacteria Bacteria 

S. aureus + Urine 
Filter #3 

96.67 – Bacteria Bacteria 

S. aureus + Urine 
Filter #4 100 – Bacteria Bacteria 

E. coli + Urine Filter 
#1 100 – Bacteria Bacteria 

E. coli + Urine Filter 
#2 

100 – Bacteria Bacteria 

E. coli + Urine Filter 
#3 

100 – Bacteria Bacteria 

E. coli + Urine Filter 
#4 100 – Bacteria Bacteria 

E. cloacae + Urine 
Filter #1 93.33 – Bacteria Bacteria 

E. cloacae + Urine 
Filter #2 

90 – Bacteria Bacteria 

E. cloacae + Urine 
Filter #3 

100 – Bacteria Bacteria 

E. cloacae + Urine 
Filter #4 100 – Bacteria Bacteria 

Sterile Urine Filter 
#1 

– 100 No Bacteria No Bacteria 

Sterile Urine Filter 
#2 

– 96.67 No Bacteria No Bacteria 

Sterile Urine Filter 
#3 

– 93.33 No Bacteria No Bacteria 

Sterile Urine Filter 
#4 – 100 No Bacteria No Bacteria 

Sterile Urine Filter 
#5 

– 93.10 No Bacteria No Bacteria 

Sterile Urine Filter 
#6 

– 100 No Bacteria No Bacteria 

Sterile Urine Filter 
#7 – 100 No Bacteria No Bacteria 

Sterile Urine Filter 
#8 – 100 No Bacteria No Bacteria  

a refers to the averaging of spectral line intensities in MS Excel after mea
surement and extraction by the ESAWIN software. 

b refers to the averaging of spectral line intensities on the CCD chip by the 
ESAWIN software prior to the measurement of emission line intensities. 

Table 3 
Full-spectrum PCA-ANN results using the spectra from 12 filters of bacteria- 
containing urine tested with an 80:20 cross-validation.   

Bacterial Identity  

S. aureus E. coli E. cloacae 

Sensitivity 100% 100% 91.67% 
Specificity 100% 95.83% 100% 
Classification Accuracy 100% 97.91% 95.83%  

E.J. Blanchette et al.                                                                                                                                                                                                                           



Spectrochimica Acta Part B: Atomic Spectroscopy 216 (2024) 106944

7

measures the percentage of bacteria spectra correctly classified, (e.g. an 
S. aureus sensitivity of 100% means that all individual S. aureus spectra 
were correctly classified as belonging to the S. aureus class, a true pos
itive) while specificity measures the percentage of spectra that did not 
belong to that class that were correctly classified as not belonging to the 
class, (e.g. an S. aureus specificity of 100% means that none of the 
spectra from either of the other two classes were incorrectly classified as 
belonging to the S. aureus class, which would have been a false positive.) 

For an optimal medical test, the sensitivity and specificity should be 
optimized to the highest values they can be without compromising the 
accuracy of one value in favor of the other. Ideally, the sensitivity and 
specificity for a medical test should both be 100%, but typically there 
are no realistic medical tests that achieve this level of accuracy. The 
focus is on achieving a balance between the two values. To summarize 
the overall performance of a medical test, classification accuracy is the 
metric used, which is defined as the fraction of predictions a model or 
test got right out of the total number of predictions. This can be sum
marized as: classification accuracy = TP+TN

TP+TN+FP+FN× 100%. These values 
are shown in Table 3 for each species tested. Averaging the results for 
the three bacterial species yielded an overall test sensitivity of 97.2%, an 
overall specificity of 98.6%, and an overall classification accuracy of 
97.9%. 

3.4. PCA-ANN on full-spectrum data: external validation 

To provide a more realistic test, 120 PCA-ANN tests were run by 
performing ten repetitions of 12 models. Each model was constructed by 
withholding all the spectra acquired on a single unique filter and then 
constructing a PCA-ANN model from all the spectra from the other 11 
filters. The spectra from the withheld filter were then classified by this 
model, as described in Section 2.5. Table 4 shows the results of this full- 
spectrum PCA-ANN tested in this way. In this test, the sensitivities and 
the specificities were acquired by averaging over each of the ten repe
titions. The results for each test are provided in the Supplementary 
Material in Tables S3 through S5. Table 4 also provides the overall test 
sensitivity, specificity, and classification accuracy obtained by aver
aging the values obtained for each of the three species. 

It is not surprising that the results shown in Table 4 are less accurate 
than the results presented in Table 3. This is a result of the more realistic 
testing of the model. In the 80:20 cross-validation, the model and test 
data were randomized from all of the spectral data sets. It is expected 
that 80% of the spectra from any given filter were included in the model, 
making it significantly easier to identify unclassified spectra from the 
other 20% of the spectra from that filter. The external validation is much 
more realistic because it incorporates possible variations in sample 
preparation, day-to-day variations in the LIBS apparatus, true differ
ences in the urine obtained from different patients used for the tests on 
different days, etc. It is anticipated and observed that the variance be
tween spectra obtained from a single filter (all obtained at the same 
time) was smaller than the variance between spectra from different fil
ters which were often taken days or weeks apart and were obtained from 
different patients. The decrease in model performance was thus 

anticipated, but this methodology provides a more accurate determi
nation of the test's overall accuracy. The overall test sensitivity, speci
ficity, and classification accuracy were calculated by averaging the 
values obtained from each species and are shown in Table 4. Final values 
of 70.9%, 85.5% and 80.6% respectively were obtained. These results 
are all statistically lower than similar tests conducted on the same spe
cies spiked into blood specimens [29]. It is likely that the higher con
centration of salts and other elements in the urine, as compared to blood, 
yielded a LIBS spectrum that was more similar to the bacteria spectra 
that what occurred in blood. This will need to be studied more exten
sively on spectra obtained from a wider diversity and a greater number 
of patients. 

The necessity of performing ten PCA-ANN repetitions of the test are 
made obvious by looking at the scatter of the ten results obtained from 
each filter (shown in Supplementary Material Tables S3 through S5). 
The scatter is a result of the stochastic nature of ANN model building, as 
opposed to the deterministic construction of a chemometric model such 
as PLS-DA, which is essentially a linear algebra calculation. The con
struction of an ANN model can be sensitive to the initialization of the 
parameters, the order in which spectra are input to the model, the 
number of hidden layers, etc. In the work described here, the number of 
hidden layers was always kept at one. On one filter of E. coli, the 
sensitivity was measured to be 1.0 on one run (30 out of 30 spectra 
classified as E. coli) but was measured to be 0.27 on another run. It is 
believed that the quality of the data has much to do with this scatter, as 
in previous work performed while constructing these models, high- 
quality data were seen to exhibit some small amount of scatter in the 
classification results, but nowhere near this level. Work is ongoing to 
improve the quality of the LIBS data (by improving the signal-to-noise of 
the data and the shot-to-shot consistency of the spectra), as it has been 
determined that for the experiments performed here, it is the quality of 
the data, not the quality of the algorithm, that needs to improve to allow 
for more consistent and accurate classification. 

It is also possible that the number and diversity of data available for 
model construction was not sufficient to achieve consistently high rates 
of accuracy. As specified, each filter of 30 spectra was tested against a 
model constructed from 11 other filters, or 330 spectra. Most likely, the 
model needs to be constructed from a much greater number of spectra as 
ANNs generally perform more accurately when the training datasets are 
large. These specimens should also be collected from a much greater 
number of patient donors to increase the intrinsic diversity within the 
training dataset, which tends to add robustness to the model's ability to 
classify spectra that deviate from the average representative spectra in 
the class. It is hoped that a larger and more diverse collection of speci
mens will be made available in the future. 

Another issue that is being addressed is the performance of the 
concentration cone during the bacterial deposition. In both our previous 
work with blood and in this work, it was occasionally seen that entire 
filters of spectra would essentially fail to classify properly. It was typi
cally these specific filters that contributed most strongly to a decline in 
the reported accuracy, rather than the overall lack of accuracy of the 
model. In blood, two of 19 filters tested performed extremely poorly, 
and in the work reported here one filter of E. cloacae was seen to perform 
poorly. Poor performance was indicated in this case by six of the ten test 
repetitions returning a sensitivity of zero (none of the 30 spectra on the 
filter were correctly classified as E. cloacae) and none of the test repe
titions ever returning a sensitivity above 33.3% (only ten spectra out of 
the 30 acquired from the filter being correctly classified). Usually, 
visible inspection of the filters either pre- or post-ablation would give 
evidence of the quality of the deposition, indicated by the lack of a 
clearly visible concentration at the center of the filter. A close inspection 
of the LIBS data post-acquisition revealed anomalous behavior, all of the 
spectra being qualitatively different from the anticipated spectrum, or 
all being inordinately small, was typical in these cases. This indicated it 
was a failure to prepare the specimen properly, not a shot-to-shot failure 
of the LIBS technique or a failure of the model construction that was 

Table 4 
Full-spectrum PCA-ANN results using the spectra from 12 filters of bacteria- 
containing urine tested with an external validation (entire filters withheld 
from the model sequentially).   

Bacterial Identity  

S. aureus E. coli E. cloacae 

Sensitivity 86.9% 63.6% 62.3% 
Specificity 85.9% 87.7% 82.8% 
Classification Accuracy 86.3% 79.7% 76.0% 
Overall Test Sensitivity 70.9% 
Overall Test Specificity 85.5% 
Overall Test Classification Accuracy 80.6%  
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responsible. Nonetheless, no mechanism for data-rejection is yet built 
into the current testing methodology, so all of this data was always 
included in all of the models and is reported in all results. It is possible 
that these anomalous filters are erroneously lowering the reported ac
curacy improperly, but until improvements to the sample preparation 
methodology can be made, the data from all these filters are included for 
completeness. Work is underway to construct and test a new centrifuge 
cone insert that is constructed in such a way that the seal between the 
cone apex and the filter is more reproducibly achieved, insuring that the 
bacteria are more reliably concentrated in a small area a millimeter in 
diameter at the center of the filter. It is hoped that this improvement will 
address these issues described here. 

4. Conclusions 

An investigation into the use of laser-induced breakdown spectros
copy (LIBS) in combination with appropriate machine learning tech
niques to analyze urine specimens for the purpose of detecting bacterial 
pathogens and identifying the species of those pathogens has been re
ported. Clinical specimens of urine were tested by spiking urine samples 
from four patients with known aliquots of three species of bacteria. A 
PLS-DA test using four or five latent variables was found to be adequate 
for discriminating sterile urine from the urine spiked with the known 
bacteria. The PLS-DA test possessed an overall sensitivity of 98.3% and 
an overall specificity of 97.9% for the detection of pathogenic bacteria in 
urine when 599 spectra from 20 filters were tested by removing one 
entire filter at a time from the model and testing each spectrum indi
vidually. In addition, this test was repeated with all the spectra obtained 
from a single filter averaged to enhance the signal to noise of the overall 
spectrum. In this case, 12 of 12 filters of infected urine tested positive 
and 8 of 8 filters with sterile urine tested negative, yielding 100% 
sensitivity and 100% specificity. 

An artificial neural network with one hidden layer was constructed 
to classify the three pathogen species present in the spiked urine sam
ples. A principal component analysis was performed on the entire LIBS 
spectrum to reduce the dimensionality of the data from 42,000 inde
pendent variables down to ten. The first ten principal component scores 
captured 99% of the variance in the data and were used as the input data 
to the ANN implemented with python on a standard desktop PC. A 
typical validation was done by performing an 80:20 split of the data, 
testing 20% of all available data (chosen randomly) against the 
remaining 80% of the data which was used to construct the model. 
Spectra tested in this way demonstrated an average sensitivity of 97%, 
an average specificity of 99%, and an average classification accuracy of 
98%. 

The model was also tested in a more realistic and appropriate manner 
by withholding one filter at a time from the model construction and then 
testing the spectra from that filter ten times sequentially to examine the 
variance in the results of the ANN performance. When the spectra were 
tested in this way, the overall test sensitivity, specificity, and classifi
cation accuracy were calculated by averaging the values obtained from 
each of the three bacterial species and final values of 70.9%, 85.5% and 
80.6% respectively were obtained. Due to this averaging, one very 
poorly performing filter of E. cloacae was found to be responsible for a 
significant decrease in the overall sensitivity of the test when used with 
that microorganism, but all the spectra from that filter were retained in 
the analysis for completeness. Future investigations of the same meth
odology for the testing of blood specimens to develop a rapid diagnostic 
technology for treating septicemia (blood infection) and an investiga
tion of the effect on decreasing the number of bacteria spiked into the 
urine are ongoing with a newly designed deposition apparatus that will 
increase the quality and the reproducibility of bacterial concentration on 
the filter medium. 
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