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A B S T R A C T   

The ability to rapidly and accurately detect and identify pathogenic bacteria in clinically-obtained blood spec-
imens with laser-induced breakdown spectroscopy (LIBS) is evaluated. Samples of blood obtained from five 
patients in a local hospital were confirmed to be negative for the presence of bacteria by the pathology 
department and were then tested with LIBS. Specimens of blood were tested as obtained from the hospital with 
no other alteration as control samples and were also intentionally spiked with known aliquots of Escherichia coli, 
Staphylococcus aureus, Enterobacter cloacae, and Pseudomonas aeruginosa to simulate blood infections. LIBS spectra 
were acquired from blood deposited on nitrocellulose filters. The intensities of 15 emission lines measured in the 
spectra and 92 ratios of those line intensities were used as 107 independent variables in a partial least squares 
discriminant analysis (PLS-DA) to discriminate between sterile control samples and those spiked with bacteria. In 
addition, the entire LIBS spectrum from 200 nm – 590 nm was input into an artificial neural network analysis 
with principal component analysis pre-processing (PCA-ANN) to diagnose the bacterial species once detected. 

The PLS-DA test possessed a 96.3% sensitivity and a 98.6% specificity for the detection of pathogenic bacteria 
in blood when 776 spectra from 26 filters were tested by removing one entire filter at a time from the model and 
testing each spectrum individually. When all the spectra obtained from a filter were averaged to enhance the 
signal to noise of the spectrum, 19 of 19 filters of infected blood tested positive and 7 of 7 filters with sterile 
blood tested negative, yielding 100% sensitivity and 100% specificity. The PCA-ANN test performed on the entire 
LIBS spectrum possessed a 100% sensitivity and 100% specificity when using 80% of the data to build a model 
and withholding 20% for cross-validation testing. The same PCA-ANN performed on each of the 19 filters 
individually, using the other 18 filters to build the model, possessed an average sensitivity of 85.5%, an average 
specificity of 95.0%, and a classification accuracy of 92.5%. These results indicate the potential usefulness of 
LIBS for detecting and diagnosing blood infections in a clinical setting.   

1. Introduction 

Bacteria are omnipresent microorganisms found in the human body 
and the environment. While many of the bacteria that inhabit the human 
body are harmless, indeed may even be helpful in some cases, some 
bacteria can cause infection leading to illnesses and mortality in 
humans. A 1996 report published by the World Health Organization 
(WHO) stated that microbial disease is the leading cause of premature 
death worldwide [1]. While many of these infections could be treated 
quickly and efficiently in the past with broad-spectrum antibiotics, new 

antibiotic resistant strains of bacteria are emerging, making them much 
more difficult to treat. A 2019 report by the Centers for Disease Control 
and Prevention stated that in the United States alone more than 2.8 
million antibiotic-resistant infections causing 35,000 deaths were 
recorded [2] The increase in the number of antibiotic resistant patho-
gens continues to grow worldwide, causing many more deaths per year, 
and along with this increase in mortality is a concomitant increase in the 
economic strain on the health care system [2]. While several strategies 
are in use to combat this growing threat to human health, a rapid 
pathogen identification technology which could be used for quick and 

* Corresponding author. 
E-mail addresses: etracey4@uwo.ca (E.A. Tracey), baughana@uwindsor.ca (A. Baughan), johnso53@uwindsor.ca (G.E. Johnson), malik72@uwindsor.ca 

(H. Malik), alionte@uwindsor.ca (C.N. Alionte), arthuri@uwindsor.ca (I.G. Arthur), pontonim@uwindsor.ca (M.E.S. Pontoni), rehse@uwindsor.ca (S.J. Rehse).  

Contents lists available at ScienceDirect 

Spectrochimica Acta Part B: Atomic Spectroscopy 

journal homepage: www.elsevier.com/locate/sab 

https://doi.org/10.1016/j.sab.2024.106911 
Received 28 December 2023; Received in revised form 28 March 2024; Accepted 1 April 2024   

mailto:etracey4@uwo.ca
mailto:baughana@uwindsor.ca
mailto:johnso53@uwindsor.ca
mailto:malik72@uwindsor.ca
mailto:alionte@uwindsor.ca
mailto:arthuri@uwindsor.ca
mailto:pontonim@uwindsor.ca
mailto:rehse@uwindsor.ca
www.sciencedirect.com/science/journal/05848547
https://www.elsevier.com/locate/sab
https://doi.org/10.1016/j.sab.2024.106911
https://doi.org/10.1016/j.sab.2024.106911
https://doi.org/10.1016/j.sab.2024.106911
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sab.2024.106911&domain=pdf


Spectrochimica Acta Part B: Atomic Spectroscopy 215 (2024) 106911

2

targeted therapy could be introduced as another strategy to combat 
antibiotic resistance which arises due to the use and overuse of broad- 
spectrum antibiotics [2]. 

A highly relevant and dangerous nosocomial infection is sepsis, or 
bacterial blood infection. While sepsis is not always caused by bacterial 
infection, many cases are in fact bacterial in origin. A blood culture is 
required for the diagnosis of sepsis, but unfortunately, not all blood 
cultures will produce a positive test result. Antibiotics are the preferred 
treatment for sepsis, but even with the best treatment the mortality for 
patients who have reached septic shock is no better than 50% [3]. 
Complicating matters is the fact that the time it takes to initiate effective 
antimicrobial therapy is the single strongest predictor of patient 
outcome, with every hour of delay increasing patient mortality [4]. One 
compounding factor is that the standard diagnostic blood cultures are 
slow and labor intensive, usually requiring a two-step procedure con-
sisting of an initial culture taking up to 120 h, followed by a 24–48 h 
subculture to identify the pathogens detected in a positive initial culture 
[5,6]. Clearly what is required is a much more rapid method for deter-
mining the specific pathogen responsible for a presentation of bacterial 
sepsis. It is believed that laser-induced breakdown spectroscopy (LIBS), 
with its inherent advantages of speed and need for minimal sample 
preparation, could fill this role as a nearly real-time bacterial pathogen 
diagnostic [7]. 

LIBS for blood analysis has been investigated earlier. Melikechi et al. 
used LIBS to characterize the spectrum obtained from frozen whole 
blood samples from mice in a helium environment [8]. Many studies 
have used LIBS specifically to detect and identify blood cancers or 
cancer biomarkers in human blood such as Markushin et al. who used 
tag femtosecond LIBS in 2015 to detect cancer biomarkers [9]. Chen 
et al. also used LIBS on whole blood to detect lymphoma, a cancer of the 
blood that affects the immune system, at early stages of the cancer in 
order to provide earlier diagnosis and treatment [10]. LIBS in combi-
nation with various chemometric analysis techniques has also been used 
to discriminate between lymphoma and multiple myeloma using whole 
blood samples [11]. In 2018, Gaudiuso et al. used femtosecond LIBS and 
appropriate chemometric algorithms on blood and tissue from mice to 
diagnose melanoma [12]. Blood serum (a component of whole blood) 
was tested by Emara et al. to determine electrolyte concentration to 
further characterize colorectal cancers [13]. Significant work is ongoing 
to develop LIBS as a method to characterize blood samples to detect or 
stage such cancers [14–16]. 

The use of LIBS for the detection and identification of bacteria has 
been described extensively [7,17]. However, the body of work 
describing LIBS for the detection and diagnosis of pathogens or pa-
thology present in the blood is smaller than the previously mentioned 
body of work on detecting cancer biomarkers in blood. Al-Jeffery et al. 
used laser-induced fluorescence (LIF) and LIBS to detect trace rubidium 
in the blood to rapidly identify performance enhancing drugs [18]. 
Gaudiuso et al. investigated rapid diagnosis of gulf war illness using LIBS 
on blood samples [19]. Zhao et al. studied the use of chemometric 
methods to diagnose inflammation in the blood [20]. Initial work per-
formed on the detection of pathogens in blood includes Wayua et al. who 
focused on using LIBS on blood for the detection of malaria and Multari 
et al. who investigated the feasibility of detecting bacterial, viral, and 
parasite pathogens in the blood using LIBS [21,22]. The intent of the 
work described here is to investigate the ability of LIBS to detect bac-
terial pathogens in unadulterated and unprocessed whole human blood 
and to diagnose the bacterial pathogen once detected utilizing appro-
priate machine learning techniques. Several common human pathogens 
were chosen for testing as representative microorganisms. 

2. Materials and methods 

2.1. Blood 

Sterile blood was provided by the pathology lab at the Windsor 

Regional Hospital for LIBS testing. All studies were done in accordance 
with the regulations of the Research Ethics Boards at both the University 
of Windsor and the Windsor Regional Hospital. Specifically, all speci-
mens were completely anonymized prior to transfer and no information 
concerning patient identity, background, or demographics was pro-
vided. Such studies are classified as specimen transfers and are exemp-
ted from requiring a Research Ethics Board certificate according to both 
institutions. Only blood specimens that had already been tested negative 
for bacterial infection were provided in these preliminary experiments. 
Five different blood samples from different patients were provided to 
account for the difference between patient physiology. 

As provided, the blood specimens contained the anticoagulant so-
dium polyanetholesulfonate (SPS) to prevent the blood from clotting so 
it can be sampled and stored for extended periods of time. All the blood 
LIBS spectra collected were affected by the presence of the anticoagu-
lant, most likely by enhancing the observed sodium emission due to the 
presence of sodium in the SPS. All blood specimens had typically been 
held by the hospital for at least five days before transfer for LIBS testing 
to allow for a negative bacterial culture result. At the time of LIBS testing 
the blood was at least a week old and had likely already undergone some 
hemolysis. Since the goal of a clinical application is to sample the blood 
immediately after it has been drawn, these specimens do not exactly 
mimic those that would be collected directly from a patient. No attempt 
was made in this preliminary study to immediately sample whole blood 
obtained from human participants. 

2.2. Bacterial LIBS preparation 

Colonies of Escherichia coli, Staphylococcus aureus, Enterobacter 
cloacae, and Pseudomonas aeruginosa were cultured and harvested from 
appropriate growth media. Bacterial colonies were suspended in ultra- 
pure megohmic water to reduce any background elemental contribu-
tions. Samples were assayed using optical densitometry to ensure that 
approximately equal concentrations of 108 cells per cubic centimeter of 
water were prepared for each species of bacteria. In most of the exper-
iments described below, dilutions of these standard suspensions were 
used to reduce the concentration to approximately 2 × 107 cells/mL. 

The method for concentrating any bacteria-containing fluid onto the 
center of a disposable 0.45 μm filter has been described previously, but 
will briefly be recounted here [23]. Fig. 1(a) shows the disassembled 
centrifuge insert assembly in an exploded view. The aluminum cone 
with a 1 mm diameter aperture in the apex used to concentrate the 
bacteria on the disposable filter media is shown in Fig. 1(b). The entire 
sealed assembly is shown prior to centrifugation in Fig. 1(c). Figs. 1(d) 
and 1(e) show the filter medium after bacterial deposition. Discoloration 
due to the presence of a bacterial film can be seen in the center of the 
filter and ablation craters from LIBS sampling can be seen. In Fig. 1(e), 
approximately ten spectra were obtained from within the bacteria- 
containing central region, but in the tests described here, 30 spectra 
were acquired per deposition by decreasing the spacing between abla-
tion sites to approximately 150 μm. The centrifuge insert was made to fit 
inside a standard 10 mL centrifuge tube with a hinged plastic cap, being 
small enough to allow the centrifuge tube to still be closed as shown in 
Fig. 1(c). The length of the assembled insert is 40 mm, and it can hold a 
total of 1.5 mL of fluid. For all tests, 0.45 μm pore size nitrocellulose 
membrane filters 9.5 mm in diameter (HAWP04700, Millipore Inc.) 
were used. 

Simulated blood infection specimens were creating by ‘spiking’ the 
sterile blood with a small amount of bacterial suspension. One hundred 
microliters of blood was pipetted into the cone and centrifuge insert, 
followed by 100 μL of the diluted bacterial suspension. The sample was 
centrifuged (PowerSpin BX C884, Unico) at 5000 rpm (2500 g's of force) 
for 5 min. After centrifugation, all of the bacterial cells in the initial 
liquid suspension were deposited in a uniform layer inside of a circular 
area with diameter of 1 mm, achieving a cell surface density of 2.5 × 108 

cells/cm2. The filter was removed from the centrifuge insert and 
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mounted on a piece of steel with double-sided sticky tape. This was then 
transferred to the LIBS apparatus for analysis. 

Five filters of S. aureus were tested, with 30 single-shot spectra ob-
tained from each filter (150 spectra); five filters of E. coli were tested, 
with 30 single-shot spectra obtained from each filter (150 spectra); five 
filters of E. cloacae were tested, with 30 single-shot spectra obtained 
from each filter (150 spectra); and four filters of P. aeruginosa were 
tested, with 30 single-shot spectra obtained from each filter (120 
spectra) for a total of 570 spectra obtained from blood spiked with 
bacteria. Seven filters of unspiked blood were tested, with 30 single shot 
spectra obtained from each of six filters and 26 spectra obtained from 
the seventh for a total of 206 spectra obtained from sterile blood. 

2.3. LIBS apparatus 

Samples were ablated in an argon gas environment and the argon 
flow was set to 567 L/h. The laser used for ablation was an Nd:YAG 
1064 nm (Quanta Ray LAB-150-10, Spectra Physics) with 10 Hz repe-
tition rate and 10 ns pulse duration. The laser was focused to a circular 
spot approximately 75 μm in diameter using an antireflection-coated 
microscope objective, creating an ablation area of 4.4 × 10− 5 cm2. 
The light from the plasma was collected by two matching parabolic 
aluminum mirrors (f = 5.08 cm, φ = 3.81 cm) and directed into a 1 m 
steel-encased multimodal optical fibre (numerical aperture = 0.22, core 
diameter = 600 μm). The mirrors focused the light onto the optical fibre 
and increased the amount of light collected by the fibre. The light was 
then dispersed by an echelle spectrometer (ESA 3000, LLA Instruments, 
GmbH) and detected by an intensified charge-coupled device (ICCD) 
camera. The grating used in this experiment allowed a broadband 
spectrum from 200 to 840 nm to be collected with approximately 12 pm 
resolution. The ICCD utilized a Kodak camera with a 2.54 cm × 2.54 cm 
CCD chip (1064 pixels by 1064 pixels, pixel size of 24 μm2). The spec-
trometer data acquisition and the firing of the laser Q-switch were 

controlled with nanosecond timing control by the ESAWIN v3.20 soft-
ware to set the delay time for data acquisition relative to the laser pulse 
(called the gate delay, τd) and the duration of spectral data acquisition 
(which is the camera exposure time, called the gate width, τw). The gate 
delay (τd) was set to 2 μs after the firing of the laser pulse and the gate 
width (τw) was set to 20 μs for all blood LIBS experiments. 

In all experiments, only single-shot spectra were acquired, because 
multiple laser shots in a single location would ablate through the filter. 
All of the bacterial cells in the focal region were ablated by a single laser 
pulse as determined by scanning electron microscopy of the filters per-
formed subsequent to LIBS analysis. The filter was translated 150 μm 
between laser shots to provide a fresh bacterial target for each laser 
pulse, allowing the acquisition of between 20 and 30 single-shot spectra 
from a single centrifugation deposition. Knowing the bacterial cell 
density on the filter after centrifugation as described in section 2.2 and 
the laser spot size allows a calculation of approximately 11,000 cells 
ablated per laser shot, which is a low and clinically relevant number of 
cells. 

2.4. Computerized data analysis: PLS-DA 

Fifteen emission line intensities from five elements were measured 
by the ESAWIN software. These 15 lines are shown in Table 1 and 
represent the elemental composition of the blood, bacterial cells, and the 
nitrocellulose filter medium. 

Ninety-two ratios of those line intensities were used with the 15 line 
intensities to create 107 independent variables for use in a partial least 
squares discriminant analysis (PLS-DA) to discriminate between sterile 
control blood samples and those spiked with bacteria. The identification 
of these 107 ratios is provided in the Supplementary Material Tables S1 
and S2. PLS-DA is a variation of partial least squares regression (PLS). 
PLS regression constructs a linear regression model to predict a depen-
dent variable from a set of known independent variables. In the case of 

Fig. 1. The disassembled 3D printed centrifuge insert used for bacterial separation fitted with a 9.5 mm diameter disposal filter (a). The aluminum cone with a 1 mm 
diameter aperture in the apex used to concentrate the bacteria in the center of the filter (b) and the assembled apparatus inside a sealed centrifuge tube (c). Optical 
images of the filter medium with a bacterial deposition in the center and a rastered array of laser ablation sites (d) and (e). 
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PLS-DA the dependent variable is the class (or identity) of the test data 
set. PLS-DA constructs a smaller number of latent variables (LVs) from 
the 107 independent variables. The LVs are used as predictor variables 
to perform a classification prediction on unidentified test data sets. The 
PLS-DA program used for this work was PLS_toolbox v.8.7.1 running 
under Matlab 2016b v.9.1 (Eigenvector Research, Inc.) In the 
PLS_toolbox, the number of LVs can be adjusted manually or can be 
assigned automatically by the program using a statistical procedure 
known as cross-validation to optimize the classification accuracy of the 
model while avoiding overfitting of the data. For the bacterial 
discrimination of single-shot spectra, seven or eight LVs accounting for 
approximately 85% of the variance in the data were typically suggested 
by the software and were sufficient to allow efficient discrimination. The 
datasets of 107 independent variables were always pre-processed by 
mean-centering each column of variable data and setting the standard 
deviation of each column of variables to one, a standard pre-processing 
step the PLS_toolbox refers to as “auto-scaling.” 

PLS-DA was also performed on data sets where all the spectra on a 
given filter were averaged to increase the signal to noise ratio. This 
averaging was done in two ways: after the ESAWIN software had 
measured and exported the intensities of the 15 emission lines and by 
averaging the CCD camera images in the ESAWIN software prior to the 
measurement of the 15 line intensities. In these analyses, the 107 in-
dependent variables were again created from the averaged spectrum. 
These tests necessarily had far fewer data, with only 19 bacterial spectra 
and 7 control blood spectra. Due to the improved quality of the data and 
the reduced number of instances in each class used for model con-
struction and validation, in these analyses only from one to three LVs 
were required for complete discrimination of the blood with bacteria 
from the sterile blood, accounting for 80%–90% of the variance in the 
data. 

2.5. Computerized data analysis: PCA-ANN 

To discriminate the four bacterial species present in the blood, an 
artificial neural network (ANN) was trained on a subset of the entire 
LIBS spectrum from 200 nm – 590 nm. The ANN was developed in Py-
thon with the libraries Pandas, Numpy, Tensorflow, keras, and Scikit-Learn 
and was run on a standard desktop personal computer using an Intel i9 
CPU. To reduce the dimensionality of the data, the 42,000 variable 
spectra were first pre-processed with an unsupervised principal 
component analysis (PCA). Others have reported improved results when 
conducting a principal component analysis on LIBS data first, and then 
using the principal component scores as independent variables in an 

ANN [24,25]. The number of principle component scores (PC scores) 
retained from the PCA becomes the new number of input nodes in the 
ANN algorithm, significantly reducing training time. A PCA algorithm 
was developed in python using the libraries sklearn.decomposition, 
pandas, numpy, and mpl_toolkits. Ten PC scores which captured 99.58% 
of the variance were kept for use in the ANN. Initially the data was 
mean-centered prior to PCA by calculating the mean of the data across 
each wavelength and subtracting the mean from each data point of the 
same wavelength. While mean-centering provided acceptable results, 
they were no better than the results obtained without the use of pre- 
processing. Since no gain in classification accuracy was observed 
when using pre-processed data, for all the results provided below the 
spectral data were not pre-processed prior to PCA. This lack of 
improvement in classification accuracy is mostly likely due to the fact 
that in the full-spectrum LIBS data (over 42,000 independent variables) 
the majority of channels (variables) are background and noise, and are 
thus already scattered near zero with similar standard deviations. 

An ANN optimization algorithm was developed for use with the ANN 
to optimize certain parameters utilized during algorithm training 
including the patience and number of hidden nodes. The hidden nodes 
are the loci where weighted inputs from the first neural network layer, 
which are the ten PC scores, are mapped onto output variables, in this 
case the bacterial class to which the specimen belongs. The patience is a 
parameter that assists in the convergence of the algorithm by deter-
mining when the iterations of the model construction should cease if no 
improvement of the model loss can be achieved. This algorithm calcu-
lated the average sensitivity and specificity for each value of patience 
and number of hidden nodes, allowing the algorithm to be tailored to the 
bacterial spectral data. In all analyses only one hidden layer was used in 
the ANN. Before the data was classified with ANN, the program 
randomly split all the data into a training set and a testing set. The 
testing set was created by removing 20% of the spectra from the data set. 
Typically in ANN, the larger the training set the better the performance, 
thus the use of this 80:20 cross-validation scheme. To represent a more 
realistic test, the data were also tested in an “external validation” 
scheme, where all of the shots on a single filter were withheld entirely 
from the model and used as test data. Nineteen individual tests, one for 
each filter withheld, were then performed to obtain the classification 
accuracy for each species of bacteria. In addition, each test was repeated 
10 times in a row to account for variations in the convergence of the 
ANN. Variations in repeated results were observed due to the sensitivity 
of the ANN model construction to its initialization, and this is described 
in section 3.4. The sensitivities and specificities for each filter and spe-
cies were constructed by averaging the results of the ten repetitions for 
each filter. Thus 190 PCA-ANN tests were performed on the data. Lastly, 
to demonstrate that the ANN was not fitting noise, experiments were 
performed where the spectral identities were randomized after PCA but 
before the PC scores were input to the ANN. During these tests no 
classification of the spectra was possible due to the lack of any variance 
between the now-randomized groups. 

3. Results and discussion 

Fig. 2 shows a spectrum of blood overlaid with a spectrum of blood 
spiked with E. coli bacteria. These spectra are consistent with spectra 
observed in the studies on whole blood referenced earlier, although in 
several of those studies, trace elements like Fe and K were observed and 
measured. Those elements were not reliably detected in the specimens 
tested in this study. As well, molecular emissions were observed (e.g. the 
CN violet system from 388 nm to 380 nm which can be seen in Fig. 2) but 
the intensities of molecular emissions were not measured. Hβ emission 
at 486 nm was observed but also not measured due to the extreme width 
of the Stark-broadened emission line. Hα emission at 656 nm was not 
observed due to the presence of spectral gaps in the ESA3000 echello-
gram at that wavelength. It is presumed that the observed hydrogen and 
molecular emission would play a role in the PCA-ANN analysis which 

Table 1 
Identification and wavelengths of the 15 emission 
lines observed in the spectra of blood and blood/ 
bacteria.  

Speciesa Wavelength (nm) 

C I 247.856 
P I 213.618 
P I 214.914 
P I 253.56 
Mg II 279.079 
Mg II 279.553 
Mg II 279. 806 
Mg II 280.271 
Mg I 277.983 
Ca II 317.933 
Ca II 393.366 
Ca II 396.847 
Ca I 422.673 
Na I 588.995 
Na I 589.593  

a I denotes a neutral species; II denotes a singly- 
ionized species. 
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utilized the entire LIBS spectrum. This is one explanation for the 
improved performance of that particular analysis. 

In Fig. 2 each spectrum is the average of thirty laser shots taken 
across an entire filter to increase the signal to noise for visualization 
purposes only. In the analysis described here, the emission intensity of a 
spectrum acquired from approximately 11,000 cells in the focal region 
of a single laser shot was sufficient to allow classification in both the 
PLS-DA and the PCA-ANN. As shown in the insets in Fig. 2, a careful 
comparison between the spectra showed that the intensities of calcium, 
magnesium, and phosphorus lines in bacteria mixed with blood were 
reliably and consistently higher than the lines from those elements in 
blood alone. The sodium lines were less consistent, possibly due to the 
anticoagulant in the specimens. In the inset in Fig. 2, the sodium lines in 
the spectra from the bacteria mixed with blood were slightly smaller 
than in the blood alone, although this was within the noise of the 
measurement and was not consistently observed. Most notably, the 
phosphorus lines in bacteria mixed with blood, although relatively 
weak, were always higher than in blood alone. Phosphorus emission (as 
shown in the inset) was never observed in the absence of bacteria, 
making it a reliable indicator of the presence of bacterial cells. It is 

apparent from Fig. 2 that the spectra from bacteria mixed with blood 
and the spectra from blood alone, although similar, are qualitatively and 
reproducibly different. 

3.1. PLS-DA on single-shot spectra 

The PLS-DA was performed as described in Section 2.4 on the five 
filters of S. aureus, five filters of E. coli, five filters of E. cloacae, four 
filters of P. aeruginosa, and seven filters of unspiked blood. A total of 26 
tests were conducted. In each test all the spectra obtained from a single 
filter were withheld and tested against a model constructed from the 
remaining 25 filters classified as either “bacteria” or “no bacteria.” After 
recording the classification results of the 30 spectra, this filter was then 
reinserted into the dataset, a different filter was withheld for testing, and 
a new model constructed. This process was repeated sequentially until 
each filter had been tested individually against a new model. The results 
of these tests are show in in Table 2. 

For the 19 filters with bacteria-containing blood depositions, the 
fraction of the 30 single-shot LIBS spectra that classified as bacteria were 
used to calculate a sensitivity for that filter. The sensitivity is the pro-

Fig. 2. Overlaid spectra of E. coli bacteria mixed with blood (red) and sterile blood (black). The spectrum is dominated by the emission from calcium, magnesium, 
sodium, and carbon. The calcium, magnesium, and phosphorus line intensities were consistently higher in the bacteria mixed with blood than in blood alone, as can 
be seen in the zoomed in spectral regions around the strongest lines from those elements. Phosphorus emission was typically quite small in the bacterial spectra (as 
shown in the inset) but was never observed in the absence of bacteria, making it an indicator of the presence of bacterial cells. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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portion of spectra that are classified by the model as a positive test result 
and are genuinely positive. On these bacterial-deposition filters all of the 
spectra were genuinely positive. The sensitivity also depends on the 
number of false negatives, which occur when the test returns a negative 
result when it is actually positive. Reported as a percentage, the formula 
for the sensitivity is as follows: sensitivity = TP

TP+FN× 100%, where TP is 
true positive and FN is false negative. The optimal medical test would 
have a sensitivity, or true positive rate, of 100%. 

Because the 19 bacteria-containing filters were all positive for bac-
teria, no rates of false positives (specificity) could be calculated from 
these data. The results of the seven sterile blood filters were used to 

calculate specificity. For the seven filters with sterile blood depositions, 
the fraction of the 30 single-shot LIBS spectra that classified as blood 
(not bacteria) were used to calculate a specificity for that filter. The 
specificity is the true negative rate of the test and is the proportion of the 
spectra that are classified by the model as a negative test result and are 
genuinely negative. On these sterile blood-deposition filters all of the 
spectra were genuinely negative. Reported as a percentage, the formula 
for the specificity is as follows: specificity = TN

TN+FP× 100%, where TN is 
true negative and FP is false positive. The optimal medical test would 
have a specificity of 100%, meaning that no uninfected samples would 
be diagnosed as infected. 

Averaging the measured sensitivities for the 19 bacteria filters yiel-
ded an overall sensitivity of 96.3% for this blood test and averaging the 
specificities for the seven blood filters yielded an overall specificity of 
98.6% when 11,000 bacterial cells were ablated per laser shot. 

To determine which of the 107 independent variables contributed 
most strongly to the discrimination of unspiked blood from specimens 
spiked with bacteria, the loadings of the latent variables were studied. 
This is shown in Supplemental Material Fig. S1. The first three latent 
variables accounted for 30.08%, 14.22%, and 18.79% of the variance in 
the data, respectively. The next latent variable accounted for only 5.4% 
of the variance of the data and subsequent latent variables even less. 
Inspection of the loadings revealed that as was seen before, the relative 
abundances of calcium and magnesium were very important, as were the 
intensities of the phosphorus lines. Of particular importance were the 
ratios constructed from the measured emission intensities that are 
identified in Supplemental Material Table S2. Careful inspection of these 
loadings did not reveal any obvious trend as to which independent 
variables were most significant overall, as the magnitudes of the most 
significant loadings for each latent variable were found to be similar. 
This analysis confirms that it is not the intensity or absence of emission 
from any one element that is significant. Rather it is the multivariate 
nature of the algorithm that provides such efficient differentiation. 

3.2. PLS-DA on averaged spectra 

Table 2 also shows the results of PLS-DA when all the spectra on a 
given filter were averaged together to increase signal to noise as 
described in Section 2.4. Both methods of averaging the spectra yielded 
a sensitivity of 100% and a specificity of 100%, with no filters being 
misclassified, when approximately 330,000 total bacterial cells were 
ablated. This is still a clinically relevant number. Although there were 
far fewer data in the model and thus far fewer results due to the aver-
aging, it is believed that this way of analyzing the data will ultimately be 
of clinical utility, as the specimen contributed by a single patient must 
yield a single diagnosis to the physician, not thirty, to allow the initia-
tion of appropriate therapy. The best method for interpreting and 
relaying the results of tests such as those presented in Table 2 is still 
being studied, but it is encouraging that both single-shot spectra and 
spectra averaged from multiple acquisitions can provide high sensitiv-
ities and specificities. It is also encouraging that the particular method 
for obtaining an average spectrum from all of the spectra acquired from 
an individual patient was found to be statistically insignificant. 

Table 2 
The results of 26 PLS-DA tests performed on filters of bacteria-containing blood 
and sterile blood.  

Filter Identity Sensitivity 
% 

Specificity 
% 

Averaged 
Result 

Averaged 
Result    

(Excel)a (ESA)b 

E. cloacae + Blood 
Filter #1 96.67 – Bacteria Bacteria 

E. cloacae + Blood 
Filter #2 

100 – Bacteria Bacteria 

E. cloacae + Blood 
Filter #3 

100 – Bacteria Bacteria 

E. cloacae + Blood 
Filter #4 100 – Bacteria Bacteria 

E. cloacae + Blood 
Filter #5 100 – Bacteria Bacteria 

E. coli + Blood Filter 
#1 

100 – Bacteria Bacteria 

E. coli + Blood Filter 
#2 

100 – Bacteria Bacteria 

E. coli + Blood Filter 
#3 100 – Bacteria Bacteria 

E. coli + Blood Filter 
#4 80.00 – Bacteria Bacteria 

E. coli + Blood Filter 
#5 

100 – Bacteria Bacteria 

S. aureus + Blood 
Filter #1 

90.00 – Bacteria Bacteria 

S. aureus + Blood 
Filter #2 100 – Bacteria Bacteria 

S. aureus + Blood 
Filter #3 

100 – Bacteria Bacteria 

S. aureus + Blood 
Filter #4 

96.67 – Bacteria Bacteria 

S. aureus + Blood 
Filter #5 

100 – Bacteria Bacteria 

P. aeruginosa +
Blood Filter #1 90.00 – Bacteria Bacteria 

P. aeruginosa +
Blood Filter #2 

83.33 – Bacteria Bacteria 

P. aeruginosa +
Blood Filter #3 

93.33 – Bacteria Bacteria 

P. aeruginosa +
Blood Filter #4 100 – Bacteria Bacteria 

Sterile Blood Filter 
#1 – 93.33 No Bacteria No Bacteria 

Sterile Blood Filter 
#2 

– 96.67 No Bacteria No Bacteria 

Sterile Blood Filter 
#3 

– 100 No Bacteria No Bacteria 

Sterile Blood Filter 
#4 – 100 No Bacteria No Bacteria 

Sterile Blood Filter 
#5 – 100 No Bacteria No Bacteria 

Sterile Blood Filter 
#6 

– 100 No Bacteria No Bacteria 

Sterile Blood Filter 
#7 

– 100 No Bacteria No Bacteria  

a refers to the averaging of spectral line intensities in MS Excel after mea-
surement and extraction by the ESAWIN software. 

b refers to the averaging of spectral line intensities on the CCD chip by the 
ESAWIN software prior to the measurement of emission line intensities. 

Table 3 
Full-spectrum PCA-ANN results using the spectra from 19 filters of bacteria- 
containing blood tested using an 80:20 cross-validation.   

Bacterial Identity  

S. aureus E. coli E. cloacae P. aeruginosa 

Sensitivity 100% 100% 100% 100% 
Specificity 100% 100% 100% 100% 
Classification Accuracy 100% 100% 100% 100%  

E.J. Blanchette et al.                                                                                                                                                                                                                           



Spectrochimica Acta Part B: Atomic Spectroscopy 215 (2024) 106911

7

3.3. PCA-ANN on full-Spectrum data: 80:20 cross-validation 

Table 3 shows the results of the full-spectrum PCA-ANN performed 
on all of the spectra obtained from the 19 filters with bacteria-containing 
blood utilizing an 80:20 cross-validation as described in Section 2.5. No 
sterile blood spectra were included in this model. In this table, sensi-
tivity measures the percentage of bacteria spectra correctly classified, (e. 
g. an E. coli sensitivity of 100% means that all individual E. coli spectra 
were correctly classified as belonging to the E. coli class, a true positive) 
while specificity measures the percentage of spectra that did not belong 
to that class that were correctly classified as not belonging to the class, 
(e.g. an E. coli specificity of 100% means that none of the spectra from 
any of the other three classes were incorrectly classified as belonging to 
the E. coli class, which would have been a false positive.) 

For an optimal medical test, the sensitivity and specificity should be 
optimized to the highest values they can be, without compromising the 
accuracy of one value in favor of the other. Ideally, the sensitivity and 
specificity for a medical test should be 100%, but typically there are no 
realistic medical tests that achieve this level of accuracy. Rather, the 
focus is on achieving a balance between the two values. To summarize 
the overall performance of a medical test, classification accuracy is the 
metric used, which is defined as the fraction of predictions a model or 
test predicted correctly out of the total number of predictions. This can 
be summarized as: classification accuracy = TP+TN

TP+TN+FP+FN× 100%. These 
values are shown in Table 3. The overall average sensitivity, specificity, 
and classification accuracy for this model tested in this way were all 
100%. 

3.4. PCA-ANN on full-Spectrum data: External validation 

To provide a more realistic test, 190 PCA-ANN tests were run by 
performing 10 repetitions of 19 models. Each model was constructed by 
withholding all the spectra acquired on a single unique filter and then 
constructing a PCA-ANN model from all the spectra from the other 18 
filters. The spectra from the withheld filter were then classified by this 
model, as described in Section 2.5. Table 4 shows the results of this full- 
spectrum PCA-ANN tested in this more realistic way. In this test, the 
sensitivities and the specificities were acquired by averaging over each 
of the ten repetitions. The results for each test are provided in the 
Supplementary Material in Tables S3 through S6. Table 4 also provides 
the overall test sensitivity, specificity, and classification accuracy ob-
tained by averaging the values obtained for each of the four species. 

As expected, the results shown in Table 4 are lower than the results 
presented in Table 3, and this is a result of the more realistic testing of 
the model. In the 80:20 cross-validation, since the model and test data 
were all randomized it is expected that 80% of the spectra from any 
given filter were included in the model, making it significantly easier to 
identify unclassified spectra from the remaining 20% of the spectra from 
that filter. The external validation is much more realistic because it in-
corporates possible variations in sample preparation, day-to-day varia-
tions in the LIBS apparatus, and true differences in the blood from 

different patients used for the tests on different days. When the 30 
spectra from a given filter were tested, there were no other spectra from 
that specimen included in the model construction. This type of testing 
was done to simulate all of these unknown variations which could be 
potentially encountered when a new specimen is to be tested. 

The overall test sensitivity, specificity, and classification accuracy 
were calculated by averaging the values obtained from each species. 
Final values of 85.5%, 95.0% and 92.5% respectively were obtained. 

All of the tests performed well, except for two of the five tests per-
formed on S. aureus. When this species was tested, three of the five filters 
had sensitivities of 95% or greater. In fact, 25 of the 30 tests run on these 
three filters (ten repetitions of each) possessed perfect sensitivities, with 
the lowest test of the 30 having a sensitivity of 67%. But two of the five 
filters performed extremely poorly. Both of these filters were prepared in 
an identical manner at the same time and were tested on the same day. 
This can be seen in the results shown in the Supplemental Material, 
Table S3. Of these two, one of them had only one spectrum out of 300 
correctly classify as S. aureus. The other filter exhibited greater variation 
in the results of the ten repetitions of PCA-ANN, with two of them 
possessing a sensitivity of 100% and 67% and the other eight possessing 
a sensitivity of 0%. An examination of the spectra from these filters 
revealed that they did present as slightly anomalous from the typical 
S. aureus spectra, having noticeable differences in the intensities and 
ratios of the observed intensities. Cleary when the data were very poor 
and inconsistent with the other data used to build the model for the 
assigned class, the model not only had a very difficult time classifying 
unknown spectra, but was also capable of exhibiting significant varia-
tions run-to-run due to the stochastic nature of the ANN model building. 
These two anomalous filters, which by themselves out of the total of 19 
filters tested were almost completely responsible for the reported 
sensitivity and specificity being below 95%, were kept in the analysis as 
there was no valid reason for exclusion. Further tests will be performed 
to see if the nature of the variation observed in those two filters can be 
identified or mitigated. It is not believed that there is anything inherent 
to S. aureus which would inhibit its ability to be discriminated from 
these other pathogens, rather it was some systematic variation of the 
experimental setup or sample preparation which occurred on that 
particular day. 

Nonetheless, the conclusions drawn from this PCA-ANN analysis is 
that the technique can be accurate when high quality data is used to 
construct the model and is also used for testing. Such data was able to be 
acquired across four different species of bacteria and multiple patient 
blood specimens, indicating the overall robustness of the technique in 
general. Although this study was conducted using a bacterial titer 
resulting in the ablation of approximately 11,000 bacterial cells per LIBS 
spectrum, currently studies are under way to determine the decrease in 
accuracy that will inevitably occur when the titer of the bacteria added 
to the sterile blood specimens is reduced. A new design of the concen-
tration cone/centrifugation insert has recently been produced which 
forms a much better seal with the nitrocellulose filter medium, allowing 
for almost no loss of cells from the 1 mm circular deposition region. This 
loss of cells when the insert was not adequately assembled was 
responsible for a significant reduction in the amount of LIBS emission 
obtained from the bacteria. This increase in concentration ability should 
allow us to further reduce the bacterial titer to even lower concentra-
tions. In addition, we are actively performing similar tests on sterile 
urine specimens to simulate a rapid test for the presence of urinary tract 
infections, which typically would possess orders of magnitude more 
bacteria than a sepsis infection. 

No attempt was made in this study to create or test mixtures of 
different bacterial species, representing a “mixed culture.” While such 
mixed cultures do exist in humans (i.e. in the gut or in the mouth, throat, 
or oral cavity) such mixtures do not typically present clinically. In-
fections of nominally sterile bodily fluids (blood, urine, or spinal fluid) 
are almost always caused by a single microorganism only, and thus the 
ability to identify a single species of microbe in the background of the 

Table 4 
Full-spectrum PCA-ANN results using the spectra from 19 filters of bacteria- 
containing blood tested with an external validation (entire filters withheld 
from the model sequentially).   

Bacterial Identity  

S. aureus E. coli E. cloacae P. aeruginosa 

Sensitivity 61.7% 93.7% 91.6% 95.0% 
Specificity 96.2% 97.4% 90.2% 96.1% 
Classification Accuracy 87.1% 96.4% 90.6% 95.9% 
Overall Test Sensitivity 85.5% 
Overall Test Specificity 95.0% 
Overall Test Classification 

Accuracy 
92.5%  
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fluid environment is all that is necessary. Even in the case of a non-sterile 
environment (e.g. the throat), an infection is typically caused by the 
growth and spread of a single microorganism that has achieved nu-
merical dominance over the normal human flora. So again, equal 
“mixtures” would not be presented clinically in such infections. 

4. Conclusions 

An investigation into the use of laser-induced breakdown spectros-
copy (LIBS) in combination with appropriate machine learning tech-
niques to analyze blood specimens for the purpose of detecting bacterial 
pathogens and identifying the species of those pathogens has been re-
ported. Clinical specimens of blood were tested “as is” (with an anti-
coagulant additive still present and no other chemical processing) by 
spiking blood from various patients with known aliquots of four species 
of bacteria. A PLS-DA test using seven latent variables was found to be 
adequate for discriminating sterile blood from the blood spiked with the 
known bacteria when single-shot spectra were acquired. Each spectrum 
was acquired from approximately 11,000 bacterial cells in this case. The 
PLS-DA test possessed a 96.3% sensitivity and a 98.6% specificity for the 
detection of pathogenic bacteria in blood when 776 spectra from 26 
filters were tested by removing one entire filter at a time from the model 
and testing each spectrum individually. In addition, this test was 
repeated with all the spectra obtained from a single filter averaged to 
enhance the signal to noise of the overall spectrum. In this case, 19 of 19 
filters of infected blood tested positive and 7 of 7 filters with sterile 
blood tested negative, yielding 100% sensitivity and 100% specificity. 
Due to the reduced size of the validation and test data sets after aver-
aging, the PLS-DA models utilized in this test of averaged spectra 
required no more than three latent variables. 

An artificial neural network with one hidden layer was constructed 
to identify the pathogens present in the spiked blood samples. A prin-
cipal component analysis was performed on the entire LIBS spectrum to 
reduce the dimensionality of the data from 42,000 independent vari-
ables down to ten. The first ten principal component scores captured 
more than 99% of the variance in the data and were used as the input 
data to the ANN implemented with python on a standard desktop per-
sonal computer. A typical cross-validation was done by performing an 
80:20 split of the data, testing 20% of all available data (chosen 
randomly) against the remaining 80% of the data which was used to 
construct the model. Spectra tested in this way demonstrated a sensi-
tivity and specificity of 100%, with no errors in identification being 
made. 

The model was also tested by withholding one filter at a time from 
the model construction and then testing the spectra from that filter ten 
times sequentially to examine the variance in the results of the ANN 
performance. When the spectra were tested in this way, the overall test 
sensitivity, specificity, and classification accuracy were calculated by 
averaging the values obtained from each of the four bacterial species and 
final values of 85.5%, 95.0% and 92.5% respectively were obtained. 
Two very poorly performing filters of S. aureus were found to be 
responsible for a significant decrease in the overall sensitivity and 
classification accuracy of the test, but were retained in the analysis for 
completeness. Investigations of the same methodology for the testing of 
urine specimens to develop a rapid diagnostic technology for treating 
urinary tract infections and an investigation of the effect on decreasing 
the number of bacteria spiked into the blood are ongoing. 
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