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Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 
Fischer carbenes, are comprehensively presented in this chapter with a complete listing of
published examples. A majority of these processes involve CO insertion to produce species
that have ketene-like reactivity. Cycloaddition reactions presented include reaction with
imines to form b-lactams, with alkenes to form cyclobutanones, with aldehydes to form
b-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation
processes are included. Reactions involving nucleophilic attack to form esters, amino acids,
peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A
number of photoinduced reactions of carbenes do not involve CO insertion. These include
reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions,
and acyl migrations.
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Abbreviations
Bn Benzyl
Cbz Benzyloxycarbonyl
DMAP Dimethylaminopyridine
HOMO Highest occupied molecular orbital
LF Ligand field
LUMO Lowest unoccupied molecular orbital
MLCT Metal-to-ligand charge transfer
PMB Para-methoxybenzyl
PMP Para-methoxyphenyl
PPTS Pyridinium para-toluenesulfonate
tBOC t-Butyloxycarbonyl

1
Introduction

Although many transition metals form carbene complexes, only Group 6 (Cr,
Mo, W) heteroatom-stabilized Fischer carbenes of the type 
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have been extensively studied as reagents for organic synthesis (with the obvious
exception of olefin metathesis chemistry [1]). Synthetically useful photochemical
reactions have largely been restricted to Cr and Mo carbene complexes, thus this
chapter will deal primarily with the chemistry of these. Since photochemical re-
actions involve excited-state chemistry at some stage, the electronic (UV-VIS)
spectra of Fischer carbenes are central to a consideration of this chemistry.

The visible spectra of Fischer carbene complexes consist of a very weak band
above 500 nm, assigned to a spin-forbidden metal-to-ligand charge transfer band
(MLCT), a moderately intense band between 350 and 450 nm assigned as a spin-
allowed MLCT, and a weaker band at 300–350 nm assigned as a ligand field (LF)
transition [2]. A lower energy LF band is usually masked by the more intense
MLCT, although it has been observed in some nonheteroatom-stabilized carbene
complexes [3]. The HOMO is metal dp–pp centered while the LUMO is carbene-
carbon pp centered [4]. As a result, irradiation into the MLCT band should lead
to charge transfer from the metal to the ligand, a formal oxidation of the metal.

In attempts to understand the photochemical reactions of Fischer carbene
complexes, several matrix isolation and flash photolysis studies have been con-
ducted using both Cr and W (but not Mo) complexes [5–11].Although the com-
plexes studied and conditions used varied, several general conclusions were
drawn:

1. For chromium alkoxycarbene complexes the MLCT and the lowest energy 
LF bands overlap. Irradiation at l>385 nm led to anti–syn isomerization 



of the OMe group and 30% loss of CO. Loss of CO was even observed at
l>400 nm [9].

2. Tungsten alkoxycarbene complexes underwent similar anti–syn rearrange-
ments but were much less prone to undergo CO loss [5–10].

3. No CO-insertion products (metal-ketene complexes) were observed, even
when specifically sought [9, 10].

These results suggest that there should be little useful organic chemistry re-
sulting from photoinduced reactions of Fischer carbene complexes. However,
this was shown not to be the case.

In studies designed to develop new approaches to b-lactams,Michael McGuire,
then a graduate student in the author’s research group, discovered that photoly-
sis of a range of Cr Fischer carbene complexes with visible light through Pyrex
produced a short-lived species that had ketene-like reactivity [12]. Subsequent
studies [13] suggested that irradiation promoted reversible insertion of one of the
four cis-COs into the metal-carbene-carbon double bond,producing a short-lived
metallacyclopropanone-metal-ketene complex (Eq. 1). In the absence of reactive
substrates, rapid deinsertion occurred, regenerating the carbene complex.

(1)

Several stable Group 6 metal-ketene complexes are known [14], and photo-
driven insertion of CO into a tungsten-carbyne-carbon triple bond has been
demonstrated [15]. In addition, thermal decomposition of the nonheteroatom-
stabilized carbene complexes (CO)5M=CPh2 (M=Cr,W) produces diphenylke-
tene [16]. Thus, the intermediacy of transient metal-ketene complexes in the
photodriven reactions of Group 6 Fischer carbenes seems at least possible.

2
Photoinduced Reactions of Fischer Carbene Complexes

2.1
Involving CO Insertion

2.1.1
Cycloaddition Reactions

2.1.1.1
With Imines to Form bb-Lactams

The reaction of ketenes (usually formed from treatment of acid chlorides with
tertiary amines) with imines is a classic way to form b-lactams [17,18].Although
widely used, it suffers limitations in scope and efficiency, since free ketenes are
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highly reactive, and prone to dimerization and multiple incorporations into
products.Whatever the nature of the photogenerated species from Fischer car-
bene complexes, free ketenes are not produced, and these by-products are not
expected.

Photolysis of chromium alkoxycarbene complexes with a wide range of
acyclic imines of aromatic aldehydes produced b-lactams in good to excellent
yield (Table 1). The reaction was highly diastereoselective in virtually all cases,
giving the relative stereochemistry shown. Cyclic and heterocyclic imines
were similarly reactive, again producing single diastereoisomers (Table 2). Of
particular note is the clean conversion of protected imidazolines to azape-
nams. The transformation using ketenes generated from acid chlorides does
not take place [27]. Bis-carbene complexes underwent photoreaction with 
imidazolines to give bis-azapenams as 1:1 mixtures of diastereoisomers. (The
relative configuration of each azapenam had the two heteroatoms trans, as 
expected, but a 1:1 mixture of [(R,R)(S,S)] and (R,S) diastereomers resulted)

160 L. S. Hegedus

Table 1 Reaction of chromium alkoxycarbenes with acyclic aryl aldimines
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Table 2 Reaction of chromium alkoxycarbenes with cyclic imines



(Eq. 2) [28, 29]. Bis-carbenes linked through the alkyl (rather than alkoxy)
groups reacted similarly but in lower yields [30].

(2)

A few heterocyclic imines reacted poorly if at all with chromium alkoxycarbene
complexes. Oxazines required the use of the more reactive (and less stable)
molybdenum alkoxycarbenes, producing oxacephams in ≈40% yield. Oxazo-
lines gave low yields (≈12%) of the oxapenam system, along with similar
amounts of oxazinone, resulting from incorporation of two equivalents of
ketene (Eq. 3) [20].
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Table 2 (continued)

(3)



CBz-protected benzimidazole gave primarily oxazinone [31], while 3H-indoles
incorporated two equivalents of imine (Eq. 4) [32]. In these cases it appears that
the initially formed zwitterionic ketene–imine adduct could not close, and re-
acted with additional photoactivated carbene or substrate.

(4)

Other miscellaneous imines that underwent photoreaction with chromium
alkoxycarbenes include iminodithiocarbonates [33], the mono-N-phenyl imine
of benzil and the bis-N-phenyl imine of acetoin [20]. By preparing the chro-
mium carbene complex from 13CO-labeled chromium hexacarbonyl, b-lactams
with two adjacent 13C labels were synthesized [34].

Induction of asymmetry into the b-lactam-forming process was inefficient
with acyclic imines having chiral groups on the nitrogen [19] but efficient with
rigid, cyclic chiral imines (Table 3). One of these was used as a chiral template
to produce highly functionalized quaternary systems (Eq. 5) [34].

(5)

The mechanism of the classic ketene–imine reaction to form b-lactams [17, 18]
is thought to involve perpendicular attack of the imine nitrogen on the ketene
carbonyl carbon from the side of the sterically smaller of the two groups,
followed by conrotatory closure of the zwitterionic intermediate (Eq. 6). This 

(6)
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places the large substituent of the ketene cis to the anti-substituent of the imine.
In all the cases cited above, the observed stereochemistry was exactly opposite
that expected on these steric grounds. Initially, this difference was thought to
be due to the presence of the metal during the cycloadditions, biasing the
process to produce the contrasteric product. However, subsequent considera-
tions [37], supported by theoretical calculations relating the closure step of
b-lactam formation to the electronic bias observed (“torquoselectivity”) in the
ring opening of cyclobutenes bearing heteroatom substituents [38], suggested
that the observed stereoselectivity was due to the presence of the donor me-
thoxy group on the ketene. This greatly lowers the energy for closure of the
zwitterion resulting from attack over the large R group, from the face opposite
the donor groups, leading to the contrasteric product (Eq. 7).
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Table 3 Reaction of chromium alkoxycarbenes with chiral heterocyclic imines
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(7)

Chromium aminocarbenes [39] are readily available from the reaction of
K2Cr(CO)5 with iminium chlorides [40] or amides and trimethylsilyl chloride
[41]. Those from formamides (H on carbene carbon) readily underwent pho-
toreaction with a variety of imines to produce b-lactams, while those having 
R-groups (e.g., Me) on the carbene carbon produced little or no b-lactam prod-
ucts [13]. The dibenzylaminocarbene complex underwent reaction with high
diastereoselectivity (Table 4). As previously observed, cyclic, optically active
imines produced b-lactams with high enantioselectivity, while acyclic, optically
active imines induced little asymmetry.An intramolecular version produced an
unusual anti-Bredt lactam rather than the expected b-lactam (Eq. 8) [44].

(8)

With optically active formamide-derived aminocarbene complexes high
enantioselectivity was observed in most cases (Table 5). This chemistry was
used in the synthesis of 1-carbacephalathin and 3-ANA precursors (Eq. 9) [48],
as well as the synthesis of a,a¢-disubstituted amino acids (Scheme 1) [49].

Although the photodriven reactions of chromium carbene complexes with
imines superficially resemble those of free ketenes, there are major differences.
The optically active oxazolidine carbene (Table 5) gave excellent yields and
high ee values when allowed to react with imidates, oxazines, thiazines, and

(9)
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Table 4 Reaction of chromium aminocarbenes with imines
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Table 5 Reaction of optically active aminocarbenes with imines

aliphatic imines, but modest yields of mixtures of cis and trans isomers with
aryl or a,b-unsaturated imines [50]. In contrast, the corresponding oxazolidi-
none ketene (from the acid chloride [51]) gave excellent yields and ee values
with aryl and a,b-unsaturated imines but very low yields of b-lactams with
other imines. Clearly chromium is influencing the outcome of the process.

Pyrrolocarbenes produced low yields of b-lactams in photodriven reactions
with imines [52], while o-acylimidatocarbene complexes gave a mixture of
compounds with b-lactams being minor components [53].



2.1.1.2
With Olefins to Give Cyclobutanones

The first report of the reaction of a chromium alkoxycarbene with an alkene to
give a cyclobutanone came in 1974 [54], when it was reported that treatment of
the (phenyl)(methoxy) chromium carbene complex with N-vinyl pyrrolidinone
under 150 atm of CO pressure produced the corresponding cyclobutanone,
presumably via the ketene or ketene complex produced by pressure-driven 
insertion of CO into the metal-carbene-carbon bond. It wasn’t until 1989 
that the photodriven version of this process was reported [55]. Monosubsti-
tuted, electron-rich alkenes underwent photochemical reaction with chromium
alkoxycarbenes to produce cyclobutanones in fair to good yield and with 
high stereoselectivity for the more hindered cyclobutanone (Table 6) [56], the
same selectivity as that observed with free ketenes [57]. Di- and trisubstituted
alkenes were somewhat less efficient (Table 7) [56], while dienes underwent 
cycloaddition to one of the two alkenes (Table 8) [56]. Intramolecular versions
were also efficient to form five- and six-membered rings, but larger rings failed
to form and tethered alkynes gave complex mixtures of unidentified products
(Table 9) [56].

Alkoxycarbene complexes with unsaturation in the alkyl side chain rather
than the alkoxy chain underwent similar intramolecular photoreactions
(Eqs. 10 and 11) [60]. Cyclopropyl carbene complexes underwent a facile vinyl-
cyclopropane rearrangement, presumably from the metal-bound ketene inter-
mediate (Eqs. 12 and 13) [61].A cycloheptatriene carbene complex underwent
a related [6+2] cycloaddition (Eq. 14) [62].
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Scheme 1



Photoinduced Reactions of Metal Carbenes in Organic Synthesis 169

Table 6 Reaction of alkoxycarbenes with monosubstituted alkenes

(10)
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Table 7 Reaction of alkoxycarbenes with polysubstituted alkenes

Table 8 Reaction of alkoxycarbenes with cyclic dienes

R=R¢=OMe �
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Table 9 Intramolecular cyclobutanone-forming reactions



(11)

(13)

In contrast to alkoxycarbene complexes, most aminocarbene complexes appear
too electron-rich to undergo photodriven reaction with olefins. By replacing
aliphatic amino groups with the substantially less basic aryl amino groups,
modest yields of cyclobutanones were achieved (Table 10) [63], (Table 11) [64].
Both reacted with dihydropyran to give modest yields of cyclobutanone. Thio-
carbene complexes appeared to enjoy reactivity similar to that of alkoxycar-
benes (Eq. 15) [59].

(15)

Of perhaps greater use for organic synthesis was the observation that photo-
driven reactions of alkoxycarbenes with unsubstituted optically active ene 
carbamates [65] produced aminocyclobutanones in fair yield with high dia-
stereoselectivity (Table 12) [66]. In contrast, with a gem-disubstituted ene car-
bamate, the syn–anti selectivity was low but high asymmetric induction a to 
nitrogen was observed (Eq. 16). Trans-monosubstituted ene carbamates failed
to react, as did a,b-unsaturated chromium carbene complexes.
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(12)

(14)
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Table 11 Reaction of chromium pyrrolocarbene complexes with alkenes

Table 10 Reaction of arylaminocarbenes with alkenes



Although optically active functionalized cyclobutanones themselves are of
little intrinsic interest, they are highly reactive and have been converted to a
number of synthetically useful intermediates. Further functionalization was
achieved at both the a-position using enolate chemistry, and by nucleophilic 
attack at the ketone carbonyl [67]. They underwent facile Baeyer–Villiger ring
expansion and elimination of the oxazolidinone group to produce optically 
active butenolides, which were subjected to a number of 1,4-addition reactions
and 1,3-dipolar cycloaddition reactions [68]. This facile approach to optically
active butenolides was used to prepare several biologically active systems,
including two butenolides isolated from Plakortis lita [a, b, Eq. 17], tetrahydro-
cerulenin [69], and cerulenin (Scheme 2) [70]. By using cyclic alkoxycarbene
complexes, optically active spiroketals were synthesized (Eq. 18) [71]. Optically
active cyclobutanones produced as in Table 12 have also been used as precur-
sors for palladium-catalyzed ring expansion to cyclopentenones [72], and for
the study of the effect of adjacent chiral tertiary and quaternary centers on
metal-catalyzed allylic substitutions [73].
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Table 12 Reaction of alkoxycarbenes with optically active ene carbamates

(16)



(17)
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Scheme 2

(18)

The optically active cyclobutanone from the (benzyloxymethyl)(ethoxy) car-
bene complex has been developed as a template for the synthesis of 4¢-substi-
tuted nucleoside analogs (Schemes 3 and 4) [74]. Photochemical ring expan-
sion in acetic acid directly produced the acylated ketal. Treatment with a Lewis
acid and a silylated nucleophile produced 4¢-disubstituted deoxyribo analogs
[75]. Baeyer–Villiger oxidation followed by oxazolidinone elimination gave the
(benzyloxymethyl)(ethoxy)butenolide. Carbonyl reduction and acylation gave
a 1:1 mixture of epimeric allyl acetates, which were subjected to Vörbruggen
coupling to give an epimeric mixture of 4,4¢-disubstituted didehydrodideoxy 
ribonucleoside derivatives [76]. Palladium-catalyzed allylic amination with
common nucleoside bases in the presence of chiral phosphines resulted in ki-
netic resolution to give a single b-epimer (Scheme 3) [77]. This same optically
active cyclobutanone intermediate was the starting point for the synthesis of
(–)-cyclobut-A, (±)-3¢-epi-cyclobut-A [78], carbovir and aristeromycin [79], and
(+)-neplanocin A [80], as well as aminocyclopentitols [81] and, from the (me-
thoxy)(methyl) analog, 6-deoxy-4-aminohexoses (Scheme 4) [82].

c

d
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Scheme 4

Scheme 3



2.1.1.3
With Aldehydes to Give bb-Lactones

Photolysis of chromium alkoxycarbene complexes with aldehydes in the pres-
ence of Lewis acids produced b-lactones [83]. Intermolecular reactions were
slow, low-yielding, and nonstereoselective, while intramolecular reactions
were more efficient (Eqs. 19 and 20). Subsequent studies showed that amines,
particularly DMAP, could also catalyze this process (Table 13) [84], resulting
in reasonable yields and diastereoselectivity in intermolecular cases.

(19)

(20)
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Table 13 Reaction of alkoxycarbenes with aldehydes



2.1.1.4
With Azoarenes to Give Diazetidinones

Photolysis of chromium alkoxycarbenes with azoarenes produced 1,2- and 
1,3-diazetidinones, along with imidates from formal azo metathesis (Eq. 21)
[85, 86]. Elegant mechanistic studies [87–89] indicated the primary photo-
process was trans-to-cis isomerization of the azoarene followed by subsequent
thermal reaction with the carbene complex. Because of the low yields and mix-
tures obtained the process is of little synthetic use.

(21)

2.1.1.5
Photochemical Benzannulation Reactions

The thermal benzannulation of Group 6 carbene complexes with alkynes (the
Dötz reaction) is highly developed and has been used extensively in synthesis
[90, 91]. It is thought to proceed through a chromium vinylketene intermedi-
ate generated by sequential insertion of the alkyne followed by carbon monox-
ide into the chromium-carbene-carbon double bond [92]. The realization that
photodriven CO insertion into Z-dienylcarbene complexes should generate the
same vinylketene intermediate led to the development of a photochemical vari-
ant of the Dötz reaction (Table 14).
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Table 14 Photo-driven Benzannulation Reactions



Photoinduced Reactions of Metal Carbenes in Organic Synthesis 179

Table 14 (continued)
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Table 14 (continued)
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Table 14 (continued)

This photodriven benzannulation was used in the synthesis of indolocar-
bazoles (Eq. 22) [96] and calphostins (Eq. 23) [97]. The thermal insertion of
isonitriles into these same classes of carbenes provided a complementary ap-
proach to similar benzannulations [98–100]. Manganese alkoxycarbene com-
plexes underwent both inter- [101] and intramolecular [102] photodriven benz-
annulation reactions with alkynes (Eqs. 24 and 25).

(22)



2.1.2
Nucleophilic Attack

2.1.2.1
By Alcohols to Give Esters

Photodriven reactions of Fischer carbenes with alcohols produces esters, the
expected product from nucleophilic addition to ketenes. Hydroxycarbene com-
plexes, generated in situ by protonation of the corresponding “ate” complex,
produced a-hydroxyesters in modest yield (Table 15) [103]. Ketals, presumably
formed by thermal decomposition of the carbenes, were major by-products. The
discovery that amides were readily converted to aminocarbene complexes [104]
resulted in an efficient approach to a-amino acids by photodriven reaction of
these aminocarbenes with alcohols (Table 16) [105, 106]. a-Alkylation of the
(methyl)(dibenzylamino)carbene complex followed by photolysis produced a
range of racemic alanine derivatives (Eq. 26). With chiral oxazolidine carbene
complexes optically active amino acid derivatives were available (Eq. 27). Since
both enantiomers of the optically active chromium aminocarbene are equally
available, both the natural S and unnatural R amino acid derivatives are equally
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(23)

(24)

(25)



available. Even a-deuteroglycine (Eq. 28) [107] and 13C-labeled, a-deuterated
amino acids [34] were available by this methodology (Eq. 29). 2,6-Imino-D-
allonates were prepared using this chemistry (Eq. 30) [108].

(26)

(27)
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Table 15 Photo-driven reactions of hydroxycarbene complexes with alcohols
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Table 16 Photo-driven reactions of aminocarbenes to produce a amino acids

(28)



Activated esters for use in peptide-coupling reactions were produced by pho-
tolysis of optically active chromium aminocarbenes with alcohols which are
good leaving groups, such as phenol, pentafluorophenol, 2,4,5-trichlorophenol,
and N-hydroxysuccinimide (Table 17) [109]. Since arylcarbenes bearing the op-
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(29)

(30)

Table 17 Synthesis of optically active activated amino esters



tically active oxazolidine auxilliary are difficult to synthesize and often unsta-
ble, the above chemistry does not afford an effective approach to aryl glycines.
In contrast, a wide range of arylcarbenes having an optically active diphenyl-
amino alcohol as a chiral auxilliary were readily synthesized [110]. Photolysis
of these resulted in intramolecular trapping of the ketene-like intermediate,
producing aryl-substituted oxazinones in good yield. Although diastereose-
lectivity for the process was only fair, diastereoisomers were readily separated
to provide reasonable yields of optically pure aryl glycines (Table 18). Intra-
molecular trapping by a pendant OH group from aldol reactions at the a-car-
bon produced 2-aminobutyrolactones (Table 19) [111]. These were converted
to homoserines and were used in the total synthesis of (+)-bulgecinine.
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Table 18 Synthesis of aryl glycines
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Table 19 Photo-driven synthesis of a-aminobutyrolactones

2.1.2.2
By Amino Acids to Give Peptides

A major justification for the synthesis of unnatural amino acids is to incorpo-
rate them into peptides to alter their biological activity/stability. By using an
amino acid ester as the nucleophile both the peptide bond and the new stereo-
genic center, the absolute configuration of which is controlled by the carbene
not the amino acid, were generated in the coupling step (Table 20) [112]. The
reaction was efficient for a range of amino acid esters, including those having
side chain functionality [113], and a modest range of carbene complexes. This
system experienced modest “double diastereoselection” with (R)(S) or (S)(R)
being the “matched” pair and (S)(S) or (R)(R) being the mismatched pair.
This effect only slightly eroded diastereoselectivity. Even sterically hindered
a,a-dialkyl amino acid esters and N-alkyl amino acid esters coupled reasonably
well, because the species photogenerated from the carbene complex was highly
reactive [113]. This chemistry worked well on Merrifield resin-supported sys-



188 L. S. Hegedus

Table 20 Synthesis of dipeptides from aminocarbenes and a-aminoesters



tems and was used to synthesize an octapeptide having three unnatural, chro-
mium carbene-derived residues in the middle [114]. Soluble poly(ethylene 
glycol) (PEG)-supported systems also coupled effectively [115]. Photolysis of
o-silylcarbenes in the presence of p-anisidine gave N-p-anisyl-a-hydroxy-
amides in fair yield [116].

2.1.2.3
By Stabilized Ylides to Produce Captodative Allenes

Photolysis of alkoxycarbene complexes in the presence of stabilized ylides pro-
duced allenes having a donating group at one terminus and an accepting group
at the other. These were highly reactive and rearranged to 1,3-dienes under
mildly acidic conditions and hydrolyzed to g-keto-a,b-unsaturated esters
(Eq. 31) [117].

2.1.2.4
By Arenes: Intramolecular Friedel–Crafts Arene Acylation

Chromium carbene complexes having electron-rich arenes tethered to the car-
bene oxygen or carbon underwent photodriven intramolecular Friedel–Crafts
acylation in the presence of zinc chloride (Eqs. 32 and 33) [118]. The process
was highly regioselective, undergoing acylation exclusively para to the acti-
vating group.
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(32)

(31)
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Table 21 Zwitterionic aza-Cope reaction

(33)

2.1.2.5
By Tertiary Allylic Amines: Zwitterionic Aza-Cope Rearrangement

Ketenes react with tertiary allylic amines in the presence of Lewis acids to give
zwitterionic intermediates which undergo [3,3]-sigmatropic rearrangement
[119]. Photolysis of chromium carbene complexes in the presence of tertiary
amines results in similar chemistry [120]. Cyclic (Table 21) and strained allylic
amines (Eq. 34) work best, while acylic amines are less reactive (Eq. 35).



(34)

(35)

2.2
Photodriven Reactions of Fischer Carbenes Not Involving CO Insertion

2.2.1
Nucleophilic Addition/Elimination at the Carbene Carbon

Sulfur-stabilized ylides underwent photodriven reaction with chromium alkoxy-
carbenes to produce 2-acyl vinyl ethers as E/Z mixtures with the E isomer 
predominating (Table 22) [121–123]. The reaction is thought to proceed by nu-
cleophilic attack of the ylide carbon at the chromium carbene carbon followed
by elimination of (CO)5CrSMe2. The same reaction occurred thermally, but at
a reduced rate. Sulfilimines underwent a similar addition/elimination process
to produce imidates or their hydrolysis products (Table 23) [124, 125].Again the
reaction also proceeded thermally but much more slowly. Less basic sulfil-
imines having acyl or sulfonyl groups on nitrogen failed to react.

A narrow range of 2-phenyl-1-azirines underwent photodriven reactions
with alkoxycarbenes to give N-vinylimidates, in a process probably related to
the above reactions (Table 24) [126].
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2.2.2
Cyclopropanation and Other Cycloadditions

One of the earliest reported thermal reactions of Fischer carbene complexes
was the reaction with olefins to give cyclopropanes [127]. More recently it has
been shown that photolysis accelerates intermolecular cyclopropanation of
electron-poor alkenes [128]. Photolysis of Group 6 imine carbenes with alkenes
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Table 22 Photo-driven reaction of sulfur-stabilized ylides with alkoxycarbenes
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Table 23 Photo-driven reactions of sulfilimines with alkoxycarbenes
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Table 24 Photo-driven reaction of 2-phenyl-1-azirines with alkoxycarbenes

produced 1-pyrrolines [129, 130].Although this was initially thought to involve
a [3+2] cycloaddition it was subsequently shown to involve two photochemical
steps, initial cyclopropanation with photolysis simply acting to eject a CO from
the carbene to allow cyclopropanation, followed by photodriven rearrangement
of the cyclopropyl ketimine to the 1-pyrroline [131]. A wide range of electron-
poor alkenes were reactive, as were several imine carbenes (Table 25).A related
photodriven reaction of Group 6 imine carbenes with alkynes produced 2H-pyr-
roles. However, this process was thought to proceed via a six-membered aza-
metallacycle rather than via cyclopropene intermediates (Table 26) [132].

Finally, chromium imine carbenes underwent photoreaction with imines to
give azadienes (metathesis) (Eq. 36), with azobenzene to give both metathesis
and cycloaddition products (Eq. 37), and with ketones to give oxazolines
(Eq. 38) [133].

(36)

(37)
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Table 25 Photo-driven reaction of Group 6 imine carbenes with alkenes

Table 26 Photo-driven reactions of Group 6 imine carbenes with alkynes



(38)

1,3-Dipolar cycloadditions to alkynylcarbenes followed by photolysis led to
b-enamino ketoaldehydes (Eq. 39) [134]. Photolysis of N-acylamino carbene
complexes produced munchnones, which were trapped with alkynes to give
pyrroles (Table 27) [135]. This same reaction occurred in the dark under 30 psi
carbon monoxide pressure. Tungsten carbonyl cyclized N-(o-alkynylphenyl)-
imines into indoles via a photodriven process proceeding through a tungsten-
carbene-containing azomethine ylide (Table 28) [136]. With internal alkynes
1,2-R migration occurred (Eq. 40).
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Table 27 Cycloaddition of alkynesto acylaminocarbenes

(39)



(40)

2.2.3
Acyl Migration

Photolysis of (2-acyloxyethenyl)carbene complexes produced 2-butene-1,4-
diones (Eq. 41) [137].

(41)
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Table 28 Photo-driven tungsten carbonyl- assisted 1,3-dipolar cycloadditions



3
Conclusions

Despite the unpromising UV-visible spectra and flash photolysis studies, the
carbene complexes presented in this chapter have a rich photochemistry at
wavelengths exceeding 300 nm. A wide range of synthetically useful transfor-
mations has been developed, and continued studies are likely to reveal more.
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