H Nuclear Magnetic Resonance Chemical Shifts

Chemical Shifts in ppm downfield from tetramethylsilane (defined as $\delta = 0.000$ ppm). Values are approx. ± 0.2 ppm).

Protons on a Carbon Adjacent to a Functional Group									
Functional Group		CH ₃		CH_2		СН			
	Ĩ	δ	(Δδ)	δ	(Δδ)	δ	(Δδ)		
saturated syste	m	0.8		1.2		1.6			
M-C=C		1.6	(0.8)	2.0	(0.8)	2.4	(0.8)		
M-C≡C		1.7	(0.9)	2.2	(1.0)	2.8	(1.2)		
M-Phenyl		2.2	(1.4)	2.6	(1.4)	2.8	(1.2)		
M-Cl		3.0	(2.2)	3.4	(2.2)	4.0	(2.4)		
M-Br		2.7	(1.9)	3.4	(2.2)	4.1	(2.5)		
M-I		2.2	(1.4)	3.1	(1.9)	4.2	(2.6)		
M-OH		3.2	(2.4)	3.4	(2.2)	3.8	(2.2)		
M-OR		3.2	(2.4)	3.4	(2.2)	3.6	(2.0)		
M-O-Phenyl		3.9	(3.1)	4.1	(2.9)	4.5	(2.9)		
M-OC(=O)R		3.6	(2.8)	4.1	(2.9)	4.5	(2.9)		
M-OC(=O)Ph		3.8	(3.0)	4.2	(3.0)	5.0	(3.4)		
M-CH=O	(aldehyde)	2.2	(1.4)	2.4	(1.2)	2.5	(0.9)		
M-C(R)=O	(ketone)	2.1	(1.3)	2.3	(1.1)	2.6	(1.0)		
M-COOH	(acid)	2.1	(1.3)	2.3	(1.1)	2.5	(0.9)		
M-COOR	(ester)	2.0	(1.2)	2.2	(1.0)	2.5	(0.9)		
M-NR ₂		2.4	(1.6)	2.6	(1.4)	2.9	(1.3)		
M-NHC(=O)R	ł	2.9	(2.1)	3.3	(2.1)	3.9	(2.3)		
Protons on a Carbon Once Removed from a Functional Group									
Functional Gro	oup	CH₃		CH ₂		СН			
	- - P	δ <u></u>	(Aδ)	δ <u></u> 2	(Δδ)	δ.	$(\Lambda\delta)$		
M-C-CH ₂		0.8	()	1.2	()	1.6	(10)		
M-C-C=C		1.0	(0.2)	1.55	(0.35)	1.8	(0.2)		
M-C-C=C		1.2	(0.4)	1.5	(0.3)	1.8	(0.2)		
M-C-Ph		1.2	(0.4)	1.6	(0.4)	1.8	(0.2)		
M-C-Cl		1.5	(0.7)	1.8	(0.6)	2.0	(0.4)		
M-C-Br		1.8	(1.0)	1.9	(0.7)	1.9	(0.3)		
M-C-I		1.8	(1.0)	1.8	(0.6)	2.1	(0.5)		
M-C-OH (or OR)		1.2	(0.4)	1.5	(0.3)	1.8	(0.2)		
M-C-OPh		1.3	(0.5)	1.6	(0.4)	2.0	(0.4)		
M-C-OC(=O)R		1.3	(0.5)	1.6	(0.4)	1.8	(0.2)		
M-C-CH=O		1.1	(0.3)	1.6	(0.4)	2.0	(0.4)		
M-C-C(R)=O		1.1	(0.3)	1.6	(0.4)	2.0	(0.4)		
11 0 0(11) 0					· /		· /		
M-C-CO ₂ R		1.1	(0.3)	1.7	(0.5)	1.9	(0.3)		
M-C-CO ₂ R M-C-NR ₂		1.1 1.0	(0.3) (0.2)	1.7 1.5	(0.5) (0.3)	1.9 1.7	(0.3) (0.1)		

Protons on a Carbon Adjacent to a Functional Group

Protons on sp² and sp Hybridized Carbons

$R_{2}C=C\underline{H}_{2}$ $R_{2}C=C\underline{H}R$ $RCH=C\underline{H}R$ $cyclohexene$ $ArCH=C-C=O$	4.7-5.3 5.1 5.3 5.6 7.7	$C=C\underline{H}-C=O$ $C=C\underline{H}-CI$ $C=C\underline{H}Br$ $C\underline{H}=CH-C=O$ $RCH=O$	6.0 6.5 6.5 6.9 9.1
R-C≡C- <u>H</u>	2.3-3.3	R-OH (alcohol)	0.5-5.5
Aromatic hydrogens	6.0-9.0 (mostly 6.7-8.2)	R-NHR (amine)	0.5-5.0
R-C(=O)O <u>H</u>	12-14	R-NH-C(=O)R (amide)	5-8

Nuclear Magnetic Resonance Chemical Shifts

Chemical Shifts in ppm downfield from tetramethylsilane (TMS) (defined as $\delta = 0.000$ ppm).

General Regions:

 $0 - 1 \delta$ cyclopropyl hydrogens and methyl groups not shifted by electronegative atoms

 $1 - 2 \delta$ methyl groups β - to O or N atoms, attached to C=C or attached to aromatic rings; methylene groups

 $2 - 3 \delta$ methyl and methylene groups next to carbonyls or attached directly to nitrogen of amines

 $3 - 4 \delta$ methyl and methylene groups attached to oxygen or halogens (Br, Cl). C=CH₂ groups

4.5 - 6.5 δ hydrogens on sp² hybridized carbons of alkenes (not aromatics)

 $6.8 - 8.5 \delta$ aromatic protons

9 - 10 δ <u>aldehyde protons</u>

IMPORTANT AND DIAGNOSTIC INFRARED BANDS (a very condensed table)

<u>v (cm</u> -1)		Comments		
3000-3400	O-H stretching	alcohols- unassociated OH's - 2 bands around 3600 (sharp) H-bonded - broad absoprtion at 3400 acids- very broad, centred at ca. 3000		
3400-3200	N-H stretching	amines- unassociated NH's - 2 bands around 3400 (sharp) H-bonded - broad absorption at 3200, weaker than OH		
3300	C-H stretching of an acetylene			
3100-2850	C-H stretching	sp2 - hybridized > 3000; sp3 - hybridized < 3000		
2900-2700	C-H stretching of ALDEHYDE			
2250-2100	C≡C stretching of ALKYNE	usually weak (weaker than C≡N), unless conjugated to C=O		
2250-2225	C≡N stretching of NITRILE	2250 if not conjugated, 2225 conjugated Band <u>may</u> be weak		
1800	C=O stretching of ACID CHLORIDE	>>>> >>>>	Conjugation LOWERS these	
1735-1740	C=O stretching of ESTER	>>>> >>>>	bands by 30 cm ⁻¹	
1730	C=O stretching of	>>>>	Being in a 5-membered ring	
1710	ALDENIDE	>>>>	raises these bands by 35 cm	
1710	KETONE	>>>>		
1700	C=O stretching of ACID	>>>> >>>>		
1660	C=O stretching of AMIDE	>>>> >>>> >>>>		
1650-1600	C=C stretch	may be weak. Intensity increases with conjugation, especially to C=O		