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Abstract: The Pauson–Khand-type reaction is for-
mally a [2+2+1] cycloaddition involving an alkyne,
an alkene and carbon monoxide catalyzed or mediat-
ed by transition metal complexes. This review focus-
es on the catalytic reaction and describes the recent
research on the Pauson–Khand-type reaction.
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1 Introduction

In 1973, I. U. Khand and P. L. Pauson reported a [2+
2+1] cycloaddition of an alkyne, an alkene and
carbon monoxide. An alkyne-Co2(CO)6 complex,
which was prepared from Co2(CO)8 and an alkyne
along with the generation of carbon monoxide, react-
ed with an alkene to give a synthetically useful cyclo-
pentenone.[1] In the initial study of an intermolecular
reaction, symmetrical and active alkenes, such as eth-
ylene and norbornene, were used because four re-
gioisomers, which are often difficult to separate, could
be obtained when an unsymmetrical alkyne and
alkene were used [Eq. (1)].

Use of the intramolecular reaction avoids the for-
mation of the regioisomers. Carbonylative coupling of

an enyne gives a bicyclic cyclopentenone [Eq. (2)]. In
the 1980s, the Pauson–Khand reaction was recognized
as a useful synthetic protocol and was used as a key
reaction for the construction of carbocyclic skeletons
in natural product syntheses.[2]

In this short review, I briefly summarize the early
research on the catalytic Pauson–Khand reaction
prior to 2000, and then summarize the recent reports,
most of which were published after 2000.[3]

2 The Road to the Catalytic
Pauson–KhandACHTUNGTRENNUNG(-Type) Reaction

The proposed mechanism of the Pauson–Khand reac-
tion is shown in Scheme 1.[4] It suggests that a catalyt-
ic reaction could be possible under an atmosphere of
carbon monoxide; however, there have been only a
few limited examples, in which large excess amounts
of active alkenes were needed under a high pressure
of carbon monoxide. This would be probably because
[Co2(CO)6] is readily transformed into more stable
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oligomeric cobalt complexes prior to the complexa-
tion with the alkyne.

In 1993, Iwasawa reported a Co-catalyzed rear-
rangement of alkynylcyclopropanols to cyclopenten-
ones. Use of a triaryl phosphite as a ligand of the

cobalt carbonyl complex realized a catalytic reaction
[Eq. (3)].[5]

In 1994, Jeong disclosed a catalytic carbonylative
coupling of enynes using Co2(CO)8 with triphenyl
phosphite under the condition of pressurized carbon
monoxide [Eq. (4)].[6] This report represented the

starting point for catalytic and practical Pauson–
Khand reactions, and various reaction conditions
using a catalytic amount of cobalt carbonyl complexes
were published.[3]

In another approach to the synthesis of bicyclic cy-
clopentenones from enynes, Negishi reported a Zr-
mediated reaction. The reaction of two-valent zirconi-
um, which was prepared in situ from Cp2ZrCl2 and n-
BuLi, with an enyne gave the metallacyclopentene,
and this was readily transformed into a bicyclic cyclo-
pentenone under an atmospheric pressure of CO [Eq.
(5)].[7]

In 1996, Buchwald reported a Ti-catalyzed intramo-
lecular coupling of various enynes under an atmos-
phere of carbon monoxide, and bicyclic cyclopenten-
ones were directly obtained in good to excellent
yields [Eq. (6)].[8] The present reaction is recognized
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Scheme 1. Proposed mechanism of the Pauson–Khand reac-
tion.
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as the first catalytic Pauson–Khand-type reaction,
which means a carbonylative coupling of an alkyne
and an alkene catalyzed by transition metal com-
plexes except for cobalt ones.

Ru3(CO)12 operated as an efficient catalyst under a
high pressure of carbon monoxide at high tempera-
tures [Eq. (7)].[9] In the case of [RhCl(CO)2]2, the car-

bonylative coupling proceeded more smoothly under
a lower partial pressure of carbon monoxide, probably
because excess amounts of carbon monoxide deacti-
vate the Rh catalyst by coordination to the metal
center [Eq. (8)].[10,11]

3 Enantioselective Pauson–Khand ACHTUNGTRENNUNG(-Type)
Reaction

Diastereoselective Pauson–Khand reactions using
enynes with chiral auxiliaries on the alkyne or alkene
terminus or tethers have been reported as have also
enantioselective reactions using a stoichiometric
amount of chiral cobalt complexes.[3a,d] However, a
catalytic and enantioselective reaction had to wait till
BuchwaldIs report in 1996.[12] A highly enantioselec-
tive reaction under a CO atmosphere using a transi-
tion metal catalyst with a chiral ligand is rather diffi-
cult because the chiral ligand is dissociated from the

metal center by excess amounts of CO and part of the
reaction proceeds by an achiral metal catalyst.[13]

Buchwald overcame the difficulty by using a chiral Ti
complex in which the metal center and chiral moiety
were connected by a s-bond [Eq. (9)]. Various enynes

were transformed into chiral bicyclic cyclopentenones
by the chiral Ti-catalyzed highly enantioselective in-
tramolecular Pauson–Khand-type reaction. However,
several steps were needed for the preparation of the
chiral ligand, and the Pauson–Khand-type reaction
must be conducted in a glovebox because the low-
valent Ti complex with a Ti�C s-bonds is very sensi-
tive to air and moisture.

In 2000, Jeong reported a cationic Rh-catalyzed,
enantioselective Pauson–Khand-type reaction. The
chiral catalyst was prepared in situ from [RhCl(CO)2]2

and BINAP by the addition of AgOTf [Eq. (10)].[14]

Recently, a spiro-monophosphoramidite was reported

to be a chiral ligand for the Rh catalyst but the enan-
tioselectivity did not exceed that achieved by
BINAP.[15]

Quite independently, Shibata reported the catalysis
by Ir-tolBINAP. The chiral Ir catalyst was readily pre-
pared in situ from [IrCl ACHTUNGTRENNUNG(cod)]2 and tolBINAP, both of
which are commercially available and air-stable [Eq.
(11)].[16] The condition of low partial pressure of CO
(0.2 atm) worked well also in the Ir-catalyzed enantio-
selective reaction: higher yield and enantioselectivity
were achieved than under an atmospheric pressure of
CO [Eq. (12)].
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The chiral Ir catalyst was also used in the desym-
metrization of meso-dienynes.[17] A highly enantio-
and diastereoselective Pauson–Khand-type reaction
proceeded to give vinyl-substituted bicyclic cyclopen-
tenones with two chiral centers [Eq. (13)].

Prior to the Rh- and Ir-catalyzed reactions, Hiroi
reported a Co2(CO)8-BINAP complex-catalyzed reac-
tion.[18] High enantioselectivity was achieved; howev-
er, substrates were limited to enynes with no substitu-

ent on the alkyne terminus [Eq. (14)]. A Co2(CO)8-
chiral phosphite catalyst was also reported but the
enantioselectivity and generality of enynes were infe-
rior to those with chiral Ti, Rh and Ir catalysts as
mentioned above [Eq. (15)].[19]

4 Pauson–Khand-Type Reactions Using
Aldehydes as a CO Source

The transition metal-catalyzed decarbonylation of car-
bonyl compounds, such as aldehydes, ketones and
acid chlorides, was already reported in the 1960s, and
it was a key step in transition metal-catalyzed unique
transformations.[20] However, the use of generated
carbon monoxide by a decarbonylation step was
largely neglected.

Rh complexes catalyze both the decarbonylation of
aldehydes and the Pauson–Khand-type reaction,
namely carbonylative coupling of enynes; therefore, a
Pauson–Khand-type reaction using aldehydes as a CO
source would be possible [Eq. (16)].

Morimoto realized the reaction using pentafluoro-
benzaldehyde as a CO source. Enynes were trans-
formed into the corresponding bicyclic cyclopenten-
ones under an atmosphere of nitrogen [Eq. (17)].[21]

Shibata independently disclosed the same type of re-
action using cinnamaldehyde as a CO source [Eq.
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(18)].[22] The reaction efficiently proceeded without
solvent under an atmosphere of argon.

The reaction using cinnamaldehyde as a CO source
could be applied for the enantioselective reaction
using Rh-tolBINAP catalyst under no solvent condi-
tions[22b] and Rh-BisbenzodioxanPhos catalyst in tert-
amyl alcohol[23] [Eq. (19)].

The present reaction provided a new protocol for
carbonylation without the use of toxic carbon monox-
ide gas.[24] However, from the viewpoint of atom-
economy, pentafluorobenzene and styrene were
wasted. Morimoto further developed the Pauson–
Khand-type reaction using formaldehyde as a CO
source under the aqueous conditions.[25] The com-
bined use of hydrophobic [DPPP=1,3-bis(diphenyl-
phosphino)propane] and hydrophilic (TPPTS= triphe-
nylphospholane-3,3’,3’’-trisulfonic acid trisodium salt)
phosphines with a surfactant (SDS= sodium dodecyl
sulfate) was essential for high yield. Morimoto pro-
posed that decarbonylation and carbonylation take
place independently, and that the former proceed in
an aqueous phase and the latter in a micellar phase
[Eq. (20)]. In place of DPPP, tolBINAP was used as a

chiral and hydrophobic phosphine, and a highly enan-
tioselective Pauson–Khand-type reaction using for-
malin (37% aqueous solution of formaldehyde) and
sodium octadecyl sulfate (SOS) was achieved under
the aqueous conditions [Eq. (21)].[26]

The most atom-economical reaction is when an a,b-
unsaturated aldehyde is used as both CO source and
alkene moiety. Co/Rh heterobimetallic nanoparticles,
derived from Co2Rh2(CO)12, catalyzed the reaction of
a,b-unsaturated aldehydes with alkynes to give cyclo-
pentenones [Eq. (22)].[27] Chung ascertained that the

reaction is a carbonylative coupling of an alkyne and
alkene, and that it is not a hydroacylation along with
a cyclization.

5 Pauson–Khand-Type Reactions of
Allenes

The Pauson–Khand-type reaction of an allene moiety
as the ene component has been an intriguing topic.[28]

In the case of an intramolecular reaction of allenynes,
there are two possible reaction pathways (Scheme 2).
The reaction of an external p-bond of the allene
moiety gives a bicyclic dienone (product A). On the
other hand, the reaction of an internal p-bond gives a
bicyclic cyclopentenone with an alkylidene substituent
(product B).

Narasaka and Shibata reported the first intramolec-
ular Pauson–Khand-type reaction of allenyne using
an iron carbonyl complex under irradiation condi-
tions. Independent of the length of the tether between
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the allene and alkyne, bicyclic dienones (product A)
were obtained [Eq. (23)].[29] Brummond reported an
Mo-mediated reaction in which a-methylene cyclo-
pentenone (product B) was obtained [Eq. (24)].[30]

But these are both stoichiometric reactions.

In the catalytic reaction using a Ti[8b] or Rh[10b] com-
plex, product A was obtained. In the case of an Rh-
catalyzed reaction, the construction of seven-mem-
bered ring systems was also possible [Eq. (25)].[31]

When allenynes with two-atom tethers were used
under an atmospheric pressure of CO, the Mo(CO)6-
catalyzed reaction also gave product A because prod-
uct B has a strained [3.2.0]heptenone skeleton [Eq.
(26)].[32]

Recently, Mukai reported an Rh-catalyzed reaction
of allenenes.[33] An intramolecular carbonylative cou-

pling of an allene-alkene, which is tethered by three
or four atoms, gave a bicyclic cylopentenone with a 6–
5 or 7–5 fused ring system along with the double
bond isomerization [Eq. (27)].

An Ir-catalyzed Pauson–Khand-type reaction re-
sulted in a different regioselectivity. When allenynes
with two substituents on the allene terminus were
used under a low partial pressure of CO, the internal
p-bond of allene moiety was the major reaction site
and bicyclic cyclopentenones with an alkylidene sub-
stituent were obtained [Eq. (28)].[34] When, in place

of IrCl(CO) ACHTUNGTRENNUNG(PPh3)2, RhCl(CO) ACHTUNGTRENNUNG(PPh3)2 was used as a
catalyst under the same reaction conditions, reaction
of the external p-bond of the allene moiety was the
major pathway. The present transformation realized
the first example of an enantioselective Pauson–
Khand-type reaction of an allenyne, although the re-
action conditions have not been optimized yet [Eq.
(29)].[35]

Scheme 2. Two reaction pathways of allenynes.
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As a nitrogen analogue of an allene, a carbodiimide
could also operate as an ene moiety in a Pauson–
Khand reaction. After SaitoIs report of an Mo-medi-
ated reaction,[36] Mukai disclosed a Co2(CO)8-cata-
lyzed hetero-Pauson–Khand reaction of an alkyne-
carbodiimide in the presence of TMTU (tetrame-
thylthiourea) [Eq. (30)].[37]

6 Pauson–Khand-Type Reactions of
Dienes

Wender studied Pauson–Khand-type reactions using
dienes as the ene moiety. When the Rh-catalyzed re-
action of 1,3-diene-yne was examined under an at-
mospheric pressure of CO at 40 8C in THF, a [4+2]
cycloaddition proceeded as the major pathway, and
[2+2+1] and [4+2+1] cycloadducts were minor
products. On the other hand, when the reaction was
examined at room temperature in 1,2-dichloroethane
(DCE), a [2+2+1] cycloaddition predominantly and
diastereoselectively proceeded to give a bicyclic cyclo-
pentenone with an isopropenyl group [Eq. (31)].[38] In

place of 1,3-diene-ynes, 1,3-diene-enes also underwent
the [2+2+1] cycloaddition to give bicyclic cyclopen-
tanones as a single diastereomer [Eq. (32)].[39] The
diene component plays a pivotal role in the cycloaddi-
tion, and no cycloadduct was obtained from bis-enes.

A [2+2+1] cycloaddition of a 1,3-diene-allene was
also possible, and a bicyclic cyclopentanone with an
alkylidene and a vinyl substituent was obtained at
room temperature [Eq. (33)]. The reaction tempera-

ture determined the cycloaddition pathways, and a
[4+2] cycloadduct was the major product at 80 8C.[40]

The use of a diene moiety enabled the realization
of an intermolecular Pauson–Khand-type reaction.
The Rh-catalyzed reaction of 2,3-dimethylbuta-1,3-
diene and an alkyne efficiently proceeded at 60 8C to
give a cyclopentenone with an isopropenyl group [Eq.
(34)]. The choice of the reaction temperature was cru-
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cial also in this reaction, and two [4+2] cycloadducts
were major products at 80 8C.[41]

7 Conclusion

This manuscript offers a brief summary of the catalyt-
ic Pauson–Khand ACHTUNGTRENNUNG(-type) reaction and the recent ad-
vances in this reaction type. In the 1990s, the Pauson–
Khand reaction was dramatically developed into the
Pauson–Khand-type reaction, and various transition
metal catalysts including chiral species have been re-
ported. Recently, modified (chiral) catalysts and reac-
tion conditions, and new types of substrates, such as
allenes and dienes, are major topics of interest. How-
ever, the limitation of alkynes and alkenes still exists,
especially in enantioselective and/or intermolecular
reactions. Therefore, further optimization of the cata-
lysts and reaction conditions for the Pauson–Khand-
type reaction is desired.
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