NOTICE RE: GRADUATE ASSISTANT (GA) POSITIONS AVAILABLE FOR Winter 2025

In accordance with Article 12:01 of the CUPE 4580 Collective Agreement the Department of Electrical & Computer Engineering invites applications for GA positions for the Winter 2025 term.

The total number of projected Graduate Assistantship positions for Winter 2025 is 98 GAs for a total of 13,720 hours. All positions are subject to sufficient enrolment and final budgetary approval.

Course # and course	Course Description	E = Essential Qualifications P = Preferred Qualifications	Projected
name			# of GAs
GENG 1201 Cornerstone Design	The engineering design process: problem formulation, functional requirements and constraints, competitive	P – Previously taken or GA'd the course	2
comercial Design	evaluation and areas of improvement conceptual design		
	through ideation sketches selection of design		
	communication of the design solution, prototype		
	construction, testing, iteration, reporting, Includes group		
	work to develop personal, teamwork, leadership, and		
	task completion skills as part of the design process.		
	(Prerequisite: GENG-1102, Open only to Engineering		
	students.) (4.5 hours weekly.)		
GENG 1202	This course introduces the fundamentals of electrical	P P raviously taken or GA'd the course	
Introductory Electrical	and computer engineering, including introductory	1 – Treviously taken of GA a the course	15
and Computer	selected topics on circuit elements and analysis.		
Engineering	semiconductor devices, optical devices, sensors, electric		
Dr. Arezoo Emadi	motors, operational amplifiers, and logic gates, (Open		
	only to students in Engineering)		
GENG 8010	This course introduces the fundamentals of electrical	P – Previously taken or GA'd the course	
Engineering Mathematics	and computer engineering, including introductory		6
Dr. Mehrdad Saif	selected topics on circuit elements and analysis,		
	semiconductor devices, optical devices, sensors, electric		
	motors, operational amplifiers, and logic gates. (Open		
	only to students in Engineering)		
GENG 8030	This course covers the basics of computational analysis	P – Previously taken or GA'd the course	-
Computational Methods	for real-world engineering applications. Students will		5
and Modeling for	learn the fundamentals of programming and modeling		
Engineering Applications	with MATLAB. Topics include: Computational		
TBA	Methods, Model Building, for Engineering Projects,		
	Hardware for Real-time Testing, Data Acquisition from		
	Sensors. Students will complete a real-world project in		
	the areas of their interests.		
ELEC 2170	Boolean algebra and logic gates; simplification of	P – Previously taken or GA'd the course	6
Digital Logic Design	Boolean functions; arithmetic operations; analysis and		0
TBA	design of combinatorial logic circuits with SSI, MSI,		
	and LSI; sequential logic components; registers;		
	counters and memory units; analysis and synthesis of		
	sequential synchronous and asynchronous networks.		
	(Co-requisites: MATH-2780 and MATH-2790) (3		

List of courses that may utilize Graduate Assistants for the Winter 2025 term which will run from January 6th, 2025 - April 30th, 2025:

	lecture, 2 Laboratory/tutorial hours or equivalent a		
	week.)		
ELEC 2200	Sinusoidal steady-state analysis; complex power in	P – Previously taken or GA'd the course	
Circuit Analysis II	single and three-phase systems; magnetically coupled		5
Dr. Chunhong Chen	circuits; circuit analysis in the s-domain; frequency		
-	response; two-port networks; and computer-aided		
	analysis and design. (3 lecture, 3.0 laboratory/tutorial		
	hours a week.) (Prerequisite: ELEC-2140.)		
ELEC 2260	Classification of signals; introduction to diodes; rectifier	Circuit Assembly and Testing: Ability to	
Electronics I	circuits, Zener diode, limiting and clamping circuits; Op	build and test circuits using breadboards.	5
Dr. Mitra Mirhassani	amp amplifier configurations, Op amp distortion, non	diodes, opamps, resistors, capacitors, and	
	ideal op amp performance; active filters, Tow-Thomas	other components.	
	Biquad; Introduction to data converters; oscillators;	Proficiency with Lab Equipment:	
	super-diodes; pulse generation. (Prerequisites: MATH-	Competence in using multimeters	
	2780 and MATH-2790) (3 lecture, 1.5 laboratory hours	oscilloscopes signal generators and	
	and 1.5 tutorial hours a week.)	power supplies to measure voltage	
		current, and other parameters.	
		Understanding of Circuit Theory: Solid	
		grash of basic electronics theory	
		including the behaviour of circuit	
		elements in different configurations	
		(e.g., rectifiers, clippers, clamping	
		circuits) and operational amplifiers (e.g.	
		inverting, non-inverting amplifiers).	
		Troubleshooting Skills: Ability to	
		diagnose and resolve issues in lab	
		experiments such as incorrect wiring	
		faulty components, or unexpected	
		measurement results.	
		Knowledge of Simulation Tools:	
		Familiarity with circuit simulation	
		software (e.g. I TSpice Multisim) to	
		assist students in verifying theoretical	
		designs and predicting circuit behaviour	
		Safaty Awaranassy Knowladza of lab	
		safety protocols, especially concerning	
		the handling of electrical equipment and	
		nower supplies and preventing short	
		circuits	
		Effective Communication: Explaining	
		concepts clearly to students and	
		providing guidance during lab sessions	
		Detines and Attention to Details.	
		Provision in acting up current and	
		miding students through detailed stars	
		guiding students through detailed steps,	
		practical applications	
		D Depressionale to low or CALL(1	
		r - Previously taken or GA'd the course	
ELEC 2280	Static electric fields; Coulomb's law, Gauss's law and	P – Previously taken or GA'd the course	5
Electromagnetic Fields	its applications; electric potential; dielectrics; boundary		

Dr. Rashid Rashidzadeh	conditions; capacitance; resistance; steady electric		
	currents, current density, boundary condition for current		
	density, equation of continuity and Kirchhoff's law;		
	power dissipation; static magnetic fields; Biot-Savart's		
	law, Ampere's law; vector magnetic potential; magnetic		
	dipole; magnetic circuits; boundary conditions for		
	magnetic fields; magnetic forces and torque; induction		
	current. (Prerequisites: MATH-2780 and MATH-2790)		
	(3 lecture, 2 laboratory/tutorial hours or equivalent a		
	week.)		
ELEC 2320	Fundamental engineering problems and the application	P – Previously taken or GA'd the course	
Engineering Software	of digital computers to analyze these problems.		6
Fundamentals	Introduction to additional programming languages and		
TBA	computing concepts and emphasizing the use of		
	MATLAB in engineering computations (2 lecture, 2		
	tutorial hours a week.)		
ELEC 4000A	Team based design project satisfying the "CAPSTONE	\mathbf{P} – Previously taken or GA'd the course	
Capstone Design Project	DESIGN PROJECT REQUIREMENTS", available	1 – Heviously taken of GA a the course	2
Dr. Roberto Muscedere	from the Department of Electrical and Computer		
	Engineering Gives the student significant design		
	experience and builds on the knowledge and skills		
	acquired in earlier course work Provides an exposure to		
	teamwork so as to emulate a typical professional design		
	environment. Computers are to be used both in the		
	evention of the design methodology and the		
	management of the design project (Prorequisites:		
	acompletion of all Electrical Engineering courses from		
	completion of an Electrical Engineering courses from		
	1 st year, 2nd year and 3rd year.) (6 laboratory nours per		
	week; that must be completed over two consecutive		
	winter and summer terms.) 2 semester course. Topics on		
	ethics for engineers will be covered in the winter term,		
	and topics on laws for engineers will be		
	covered in the summer term during lectures. (This is an		
	experiential learning course.)		
ELEC 4190/ELEC 8900-9	Digital communication systems; discrete Fourier	E - Knowledge of digital	4
Digital Communications	transform; sampling theory; A/D converters; digital	communications fundamentals	-
Dr. Ahmed Hamdi Sakr	modulation; time-division multiplexing; packet	E - Strong grasp of probability theory	
(Cross listed with ELEC	transmission; random processes and spectral analysis	E - MATLAB/Simulink proficiency	
8900-9)	for digital systems; error probabilities; noise;	B P P P P P P P P P P	
	introduction to information theory. (Prerequisites:	1 – I teviously taken of OA a the course	
	completion of all Electrical Engineering courses from		
	1st year, 2nd year and 3rd year.) (3 lecture, 2		
	laboratory/tutorial hours or equivalent a week.)		
ELEC 4310	Stability and performance analysis in frequency	P – Previously taken or GA'd the course	0.5
Control systems II	domain; lead-lag control design in frequency domain;		0.5
Dr. Xiang Chen	elementary observer and control design in state space;		
	z- transformation and z-plane analysis; direct and		
	indirect discrete-time control design; implementation of		
	digital control. (Prerequisites: completion of all		
	Electrical Engineering courses from 1st year, 2nd year		
	and 3rd year.) (3 lecture, 1.5 laboratory hours and 1.5		
	tutorial hours a week.)		

ELEC 4350/ELEC 8900-	MicroElectroMechanical System (MEMS) technology	E - Requires skills on 3D finite element	_
43	overview and design process; microfabrication and	analysis	I
Microelectromechanical	process integration; lumped element modeling; 3-D	P = Previously taken or GA'd the course	
Systems	finite element modeling; energy conserving transducers	1 Treviously taken of GATE the course	
Dr. Sazzadur Chowdhury	(electrostatics); linear and nonlinear system dynamics;		
(Cross Listed with ELEC	elasticity, stress, strain, material properties; structure		
8900-43)	analysis, beams, plates; MEMS sensing and actuation;		
	material case studies; MEMS design methodology;		
	device modeling. (Prerequisites: completion of all		
	Electrical Engineering courses from 1st year, 2nd year		
	and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or		
	equivalent a week.)		
ELEC 4360	Protocols and architecture; data transmission; data	P – Previously taken or GA'd the course	
Computer	encoding; interfacing; data link control; multiplexing,	1 Treviously taken of Gree the course	2
Communications	ISO reference model: wide-area networks: circuit		
Dr. Huapeng Wu	switching: packet switching: ATM and frame relay:		
	LAN technology and systems: internet protocols: inter-		
	network operation: transport protocols: network		
	security (Prerequisites: completion of all Electrical		
	Engineering courses from 1st year 2nd year and 3rd		
	vear.) (3 lecture 2 laboratory/tutorial hours or		
	equivalent a week)		
ELEC 4370	Computing models of the human mind Neural		
Intelligent Computing	computing models and learning algorithms. Fuzzy set	P – Previously taken or GA'd the course	1
Dr. Hon Kwon	theory and furger systems. Evolutionary computing		
DI. HOII KWAII	A prolimations of intelligent computing. (Dronopulisites)		
	Applications of intelligent computing. (Prerequisites:		
	completion of all Electrical Engineering courses from		
	1st year, 2nd year and 3rd year in an Engineering		
	program or fourth year standing in a Computer Science		
	program.) (3 lecture, 2 laboratory/tutorial hours or		
	equivalent a week.)		
ELEC 4430	Embedded hardware and software systems; introduction	P – Previously taken or GA'd the course	2
Embedded System Design	to embedded systems; custom single-purpose		
TBA	processors, hardware design; general-purpose		
	processors, software, design flow environment and		
	tools, testing and debugging; standard single-purpose		
	processors, peripherals, memory system design;		
	interfacing issues, serial and parallel communication,		
	bus standards, protocols and arbitration; exercises on		
	real world applications; Laboratory implementation on		
	modern Field Programmable Gate Arrays (FPGAs) and		
	microcontrollers using associated Electronic Design		
	Automation (EDA) tools. (Prerequisites: completion of		
	all Electrical Engineering courses from 1st year, 2nd		
	year and 3rd year.) (3 lecture, 3 laboratory hours a		
	week.)		
ELEC 4450	Power diodes; thyristors; power Metal-Oxide-	P – Previously taken or GA'd the course	0.5
Power Electronics	Semiconductor Field-Effect Transistors (MOSFET);		0.5
Dr. Caniggia Viana	Insulated-Gate Bipolar Transistors (IGBT); controlled		
	rectifiers; DC-DC converters; inverters; AC-AC		
	converters; gate drive circuits; motor drives; r computer		
	simulation of power electronics and motor drives.		

courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.) ELEC 4490 Basics of sensors and transducers; sensor characteristics sensor and Vision P – Previously taken or GA'd the course Systems displacement and position sensors: accelerometer P – Previously taken or GA'd the course	
lecture, 2 laboratory/tutorial hours or equivalent a week.) P – Previously taken or GA'd the course ELEC 4490 Basics of sensors and transducers; sensor characteristics and applications; fundamentals of pressure, temperature, displacement and position sensors: accelerometer Systems displacement and position sensors: accelerometer	
week.) P – Previously taken or GA'd the course ELEC 4490 Basics of sensors and transducers; sensor characteristics Sensor and Vision and applications; fundamentals of pressure, temperature, Systems displacement and position sensors; accelerometer	
ELEC 4490Basics of sensors and transducers; sensor characteristics and applications; fundamentals of pressure, temperature, displacement and position sensors: accelerometerP – Previously taken or GA'd the course	
Sensor and Vision and applications; fundamentals of pressure, temperature, Systems displacement and position sensors; accelerometer	
Systems displacement and position sensors: accelerometer	3
Dr. Jonathan Wu physics, strain gauges, and torque sensors; machine	
vision; image processing, image enhancement, edge and	
corner detectors; image segmentation techniques; image	
feature extraction and matching; colour models and	
processing; object recognition and classification;	
discussion on camera parameters and calibration; stereo	
vision, 3D range imaging techniques. (Prerequisites:	
completion of all Electrical Engineering courses from	
1st year, 2nd year and 3rd year.) (3 lecture, 2	
laboratory/tutorial hours a week.)	
ELEC 4500/ELEC 8900- Principles of operation, modeling and analysis of P – Previously taken or GA'd the course	
52 electric power systems; complex power, phasors and	7
Power Systems I per-unit system; three-phase circuits; power transformer	
TBA and generator modeling; transmission line parameters;	
(Cross listed with ELEC steady-state operation of transmission lines; network	
8900-52) matrices and power flow analysis: introduction to	
alternative energy sources. (Prerequisites: completion of	
all Electrical Engineering courses from 1st year. 2nd	
vear and 3rd vear) (3 lecture, 2 laboratory/tutorial hours	
or equivalent a week.)	
ELEC 4570 Discrete time signals and systems models and analysis; P – Previously taken or GA'd the course	
Fundamentals of Digital Z-transform; discrete Fourier transform (DFT); FFT	4
Signal Processing algorithms; FIR filter design; IIR filter design; stability;	
Dr. Esam Abdel-Raheem realization; hardware and software implementations;	
digital signal processing applications. (Prerequisites:	
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from	
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2	
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)	
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.) ELEC 8240 Development and applications of probability models in P – Previously taken or GA'd the course	
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.) ELEC 8240 Stochastic Processes the analysis of stochastic systems; review of probability,	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.) ELEC 8240 Stochastic Processes the analysis of stochastic systems; review of probability, pr. Behnam Shahrrava	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)P – Previously taken or GA'd the course the analysis of stochastic systems; review of probability, random variables and stochastic processes; correlation functions applications to filtering, prediction, estimationP – Previously taken or GA'd the course	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)ELEC 8240 Stochastic Processes Dr. Behnam ShahrravaDevelopment and applications of probability models in the analysis of stochastic processes; correlation functions applications to filtering, prediction, estimation and system identification. Prerequisite: GraduateP – Previously taken or GA'd the course	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)P – Previously taken or GA'd the courseELEC 8240Development and applications of probability models in the analysis of stochastic systems; review of probability, random variables and stochastic processes; correlation functions applications to filtering, prediction, estimation and system identification. Prerequisite: Graduate Student Status. (3 lecture hours a week.)P – Previously taken or GA'd the course	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)P – Previously taken or GA'd the courseELEC 8240 Stochastic Processes Dr. Behnam ShahrravaDevelopment and applications of probability models in the analysis of stochastic processes; correlation functions applications to filtering, prediction, estimation and system identification. Prerequisite: Graduate Student Status. (3 lecture hours a week.)P – Previously taken or GA'd the courseELEC 8280This course presents digital and hybrid representation of P – Previously taken or GA'd the course	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)P – Previously taken or GA'd the courseELEC 8240 Stochastic Processes Dr. Behnam ShahrravaDevelopment and applications of probability models in the analysis of stochastic processes; correlation functions applications to filtering, prediction, estimation and system identification. Prerequisite: Graduate Student Status. (3 lecture hours a week.)P – Previously taken or GA'd the courseELEC 8280 Image ProcessingThis course presents digital and hybrid representation of images, fundamentals of colour, 2-D systems, 2-D filterP – Previously taken or GA'd the course	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)P – Previously taken or GA'd the courseELEC 8240 Stochastic Processes Dr. Behnam ShahrravaDevelopment and applications of probability models in the analysis of stochastic systems; review of probability, random variables and stochastic processes; correlation functions applications to filtering, prediction, estimation and system identification. Prerequisite: Graduate Student Status. (3 lecture hours a week.)P – Previously taken or GA'd the courseELEC 8280 Image Processing Dr. Jonathan WuThis course presents digital and hybrid representation of images, fundamentals of colour, 2-D systems, 2-D filter Dr. Jonathan WuP – Previously taken or GA'd the course	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)P – Previously taken or GA'd the courseELEC 8240 Stochastic Processes Dr. Behnam ShahrravaDevelopment and applications of probability models in functions applications to filtering, prediction, estimation and system identification. Prerequisite: Graduate Student Status. (3 lecture hours a week.)P – Previously taken or GA'd the courseELEC 8280 Image Processing Dr. Jonathan WuThis course presents digital and hybrid representation of images, fundamentals of colour, 2-D systems, 2-D filter of digital images, image enhancement techniques: homomorphic filtering,P – Previously taken or GA'd the course	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)P – Previously taken or GA'd the courseELEC 8240 Stochastic Processes Dr. Behnam ShahrravaDevelopment and applications of probability models in functions applications to filtering, prediction, estimation and system identification. Prerequisite: Graduate Student Status. (3 lecture hours a week.)P – Previously taken or GA'd the courseELEC 8280 Image Processing Dr. Jonathan WuThis course presents digital and hybrid representation of images, fundamentals of colour, 2-D systems, 2-D filter Dr. Jonathan WuP – Previously taken or GA'd the course	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)P – Previously taken or GA'd the courseELEC 8240Development and applications of probability models in the analysis of stochastic systems; review of probability, Dr. Behnam ShahrravaP – Previously taken or GA'd the courseELEC 8280This course presents digital and hybrid representation of images, fundamentals of colour, 2-D systems, 2-D filter Dr. Jonathan WuP – Previously taken or GA'd the course	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)P – Previously taken or GA'd the courseELEC 8240 Stochastic Processes Dr. Behnam ShahrravaDevelopment and applications of probability models in functions applications to filtering, prediction, estimation and system identification. Prerequisite: Graduate Student Status. (3 lecture hours a week.)P – Previously taken or GA'd the courseELEC 8280 Image Processing Dr. Jonathan WuThis course presents digital and hybrid representation of images, fundamentals of colour, 2-D systems, 2-D filter design and 2-D filtering of digital images, image enhancement techniques: homomorphic filtering, histogram equalization and modification techniques, median and statistical filtering, 2-D FFT algorithms, properties of digital images. Projects are given as aP – Previously taken or GA'd the course	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)P – Previously taken or GA'd the courseELEC 8240Development and applications of probability models in Stochastic ProcessesP – Previously taken or GA'd the courseDr. Behnam Shahrravarandom variables and stochastic processes; correlation functions applications to filtering, prediction, estimation and system identification. Prerequisite: Graduate Student Status. (3 lecture hours a week.)P – Previously taken or GA'd the courseELEC 8280This course presents digital and hybrid representation of image Processing Dr. Jonathan WuThis course presents digital images, image enhancement techniques: homomorphic filtering, histogram equalization and modification techniques, median and statistical filtering, 2-D FFT algorithms, properties of digital images. Projects are given as a means of learning practical applications of the field.P – Dreviously taken or GA'd the course	0.5
digital signal processing applications. (Prerequisites: completion of all Electrical Engineering courses from 1 st year, 2nd year and 3rd year.) (3 lecture, 2 laboratory/tutorial hours or equivalent a week.)P – Previously taken or GA'd the courseELEC 8240 Stochastic Processes Dr. Behnam ShahrravaDevelopment and applications of probability models in the analysis of stochastic systems; review of probability, random variables and stochastic processes; correlation functions applications to filtering, prediction, estimation and system identification. Prerequisite: Graduate Student Status. (3 lecture hours a week.)P – Previously taken or GA'd the courseELEC 8280 Image Processing Dr. Jonathan WuThis course presents digital and hybrid representation of images, fundamentals of colour, 2-D systems, 2-D filter design and 2-D filtering of digital images, image enhancement techniques: homomorphic filtering, histogram equalization and modification techniques, median and statistical filtering, 2-D FFT algorithms, properties of digital images. Projects are given as a means of learning practical applications of the field. Prerequisite: Graduate Student Status. (3 lecture hours	0.5

ELEC 8330	Models of the human brain and sensory systems. Neural	P – Previously taken or GA'd the course	_
Computational	networks and learning algorithms. Fuzzy sets, fuzzy		3
Intelligence	logic, and fuzzy systems. Evolutionary computation.		
Dr. Hon Kwan	Advanced topics in computational intelligence.		
	Prerequisite: Graduate Student Status. (3 lecture hours a		
	week.)		
ELEC 8510	Review of discrete-time systems and digital filters.	P - Previously taken or GA'd the course	
Advanced Digital Signal	Multirate systems including decimatots, interpolators.	1 Treviously taken of GATE the course	0.5
Processing	polyphase decomposition. Nyquist filters, two-channel.		
Dr. Maiid Ahmadi	and M-channel filter banks. Adaptive equalization		
	including equalization techniques for digital receivers.		
	linear and non-linear equalizers adaptive algorithms		
	and blind equalization. Analysis of finite wordlength		
	effects including coefficient quantization arithmetic		
	round-off errors dynamic range scaling and low-		
	sensitivity digital filter structures (3 lecture hours per		
	week) Prerequisite: Graduate Student Status		
ELEC 8660	This is an introductory course on the techniques		
Data Security and	algorithms, architectures and tools of data security and	P - Previously taken or GA'd the course	4
Crameto gran hy	angonumis, architectures and tools of data security and		
Dr. Huspana Wu	cryptography. Firstly, the theoretical aspects of data		
DI. Huapelig wu	security and cryptographic algorithms and protocols are		
	reviewed. Then we show now these techniques can be		
	integrated to provide solutions to particular data and		
	communication security problems. This course contents		
	are of use to computer and communication engineers		
	who are interested in embedding security services into		
	an information system, and thus, providing integrity,		
	confidentiality and authenticity of the data and the		
	communicating parties. Main contents: classical		
	cryptography techniques; mathematical foundations;		
	secret key cryptography; public key cryptography;		
	authentication and digital signature; network		
	cryptographic protocols. Prerequisite: Graduate Student		
	Status. (3 lecture hours a week.) (Credit cannot be		
	obtained for both 88-565 and if taken as a Special		
	Topics course.)		
ELEC 8900-2	This is a graduate level course designed to provide	P – Previously taken or GA'd the course	1
Special Topics:	students with in-depth knowledge in Estimation,		1
Estimation, Filtering &	Filtering and Target Tracking. Engineering applications		
Tracking	of this course include autonomous vehicle navigation,		
Dr. Bala Balasingam	localization and navigation in robotics, air traffic		
	control, and biomedical signal processing. The focus		
	will be equally on (i) enriching the mathematical		
	background in estimation theory and (ii) developing		
	appreciation for the above practical applications.		
ELEC 8900-30	This is a graduate level course designed to provide in-	P – Previously taken or GA'd the course	Α
Special Topics: Advanced	depth knowledge in energy storage systems, particularly,	-	4
Energy Storage Systems	batteries. This course will introduce important battery		
Dr. Bala Balasingam	management problems, such as, battery fuel gauging,		
_	optimal charging, and cell balancing, and introduce		
	engineering approaches to solve them. This course offers		
	hands on experience in battery management through		

	programming examples supported by realistic data.		
	(3 lecture hours a week.)		
ELEC 8900-58	This course will cover the main power processing	P – Previously taken or GA'd the course	1
Special Topics: EV Power	converters in a modern EV, including traction inverter,		I
Conversion	onboard charger, auxiliary power module, and DC-DC		
Dr. Caniggia Viana	converter. It will also touch on EV charging		
	infrastructure and DC fast chargers		

Refer to the timetable (www.uwindsor.ca/registrar/timetable-information) for class and exam hours and location.

Expected GA Duties

TA employees are expected to make themselves available to report for all assigned duties, both in-person/on-campus and remote/online duties. Most classes across the University are held face-to-face on campus, and even online classes may require on-campus face-to-face duties.

Assistants cannot commence their GA/TA duties until email confirmation of the approval of their contract is received from Human Resources (email titled "Authorization to Commence GA/TA Duties").

Eligibility requirements:

Successful applicants must be available to attend at the specified time of the course/lab/exams and to report for all assigned duties, which may include both in-person/on-campus and remote/online duties.

GA appointments will be offered to qualified applicants in accordance with the criteria specified in Article 12:03 of the CUPE4580 Collective Agreement.

To be eligible for a Graduate Assistantship you must be a registered fulltime graduate student:

- must be registered for the term of work at the time of hiring
- must maintain **fulltime** registration throughout the term and must be in good standing in the degree program

GA appointments cannot exceed **140 hours total for the Winter term period (January 6th to April 30th, 2025).** Refer to Articles 12, 13, and 14 of the CUPE 4580 Collective Agreement for eligibility details.

Required Essential Qualifications:

Successful applicants must meet all essential qualifications identified in the course table above.

Application forms are available from the following webpage: <u>Employment | Electrical and Computer Engineering (ECE) (uwindsor.ca)</u> Complete applications form along with a copy of your unofficial transcript must be submitted via email to Danielle Gauthier, Graduate Secretary at <u>gradece@uwindsor.ca</u>

For any questions please contact: Danielle Gauthier

Deadline for receiving applications: Wednesday, November 13th, 2024

Note that Graduate Assistants must apply each term by the application deadline, in accordance with Article 13:

"With respect to those students who have applied for and been accepted for Assistantships, the Assistant will not be paid for any shortfall of hours at the end of their respective program, provided the University has satisfied its obligation to post available positions each term in writing and on the AAU website and to offer the minimum terms of support in accordance with Article 13:01 (a) & (b) and provided that the Assistant has applied in writing or via e-mail by the application deadline for each term until they have received the minimum terms of support in accordance with Article 13:01 (a) & (b)."

In pursuit of the University of Windsor's Employment Equity Plan, members from the designated groups (Women, Aboriginal Peoples, Visible Minorities, Persons with Disabilities, and Members of Sexual Minorities) are encouraged to apply.