NOTICE RE: GRADUATE ASSISTANT (GA) POSITIONS AVAILABLE FOR FALL 2024

In accordance with Article 12:01 of the CUPE 4580 Collective Agreement the Department of Electrical & Computer Engineering invites applications for GA positions for the Fall 2024 term.

The total number of projected Graduate Assistantship positions for Fall 2024 is 50 GAs for a total of 7,000 hours. All positions are subject to sufficient enrolment and final budgetary approval.

List of courses that may utilize Graduate Assistants for the Fall 2024 term which will run from September 5 th , 2024 – December 31 st , 2024:

Course # and course <u>name</u>	Course Description	E = Essential Qualifications $P = Preferred Qualifications$	Projected # of GAs
GENG 8010 Engineering Mathematics TBA	The course will cover topics in advanced modern engineering mathematics not addressed in earlier courses and considered to be crucial for more advanced engineering courses at the graduate level. These topics include matrix and numerical analysis, advanced topics in calculus and their application to engineering design problems, and optimization. In particular tools for computer-based system modelling, analysis and engineering design will be addressed. (Open to Masters of Engineering students, excluding students in the MEng Auto Program. Open to engineering MaSc/PhD students on permission of the department/faculty as a qualifying course only. Will not count for credit towards MASc/PhD degree.)	P -Previously taken or GA'd the course	8
GENG 8030 Computational Methods and Modeling for Engineering Applications TBA	This course covers the basics of computational analysis for real-world engineering applications. Students will learn the fundamentals of programming and modeling with MATLAB. Topics include: Computational Methods, Model Building, for Engineering Projects, Hardware for Real-time Testing, Data Acquisition from Sensors. Students will complete a real-world project in the areas of their interests.	P -Previously taken or GA'd the course	4
ELEC 2141 Circuit Analysis I TBA	Basic components of electric circuits; circuit laws and theorems; circuit analysis techniques; energy-storage elements; transient response of first and second-order circuits. (3 lecture, 3.0 laboratory/tutorial hours a week.) (Credit cannot be obtained for both GENG-2340 and ELEC-2141).	P -Previously taken or GA'd the course	6
ELEC 2240 Signals and Systems Dr. A.H. Sakr	Discrete and Continuous-Time Signals and Systems, Discrete and Continuous-Time Linear Time-Invariant Systems, System Analysis in Time Domain, System Analysis in Frequency Domain, Convolution, Differential Equation Models, Fourier series, the Fourier Transform, the Laplace Transform and it's Applications, Sampling of Systems. (Prerequisites: MATH- 2780 and MATH-2790) (3 lecture, 1.5 laboratory hours and 1.5 tutorial hours a week.)	 E - Strong knowledge of Matlab or Octave. E - Proficiency in frequency- domain analysis tools, such as the Fourier transform. 	4
ELEC 3010 Computer-Aided Analysis TBA	Introduction to numerical algorithms; fundamental to scientific computation; equation solving; function approximation; integration; difference and differential equations; special computer techniques; Emphasis is placed on efficient use of computers to optimize speed and accuracy in numerical	P -Previously taken or GA'd the course	3

	computations; extensive digital computer usage for algorithm		
	verification. Labs will introduce MATLAB to solve numerical		
	problems. (Corequisites Prerequisites: MATH-2780 and		
	MATH-2790) (3 lecture, 2 laboratory/tutorial hours or		
	equivalent a week.)ry Differential Equations of any order using		
	Euler, Improved Euler and the fourth-order Runge-Kutta		
	methods. (Corequisites: MATH-2780 and MATH-2790) (3		
	lecture, 2 laboratory/tutorial hours or equivalent a week.)		
ELEC 3130	Machinery principles; transformers; AC machinery	P -Previously taken or GA'd the	2
Electromechanical	fundamentals; synchronous generators; synchronous and	course	3
Systems	induction motors; DC machinery fundamentals; DC motors;		
Dr. N. Kar	electromechanical energy conversion; three-phase concepts;		
	special-purpose motors. (Prerequisites: MATH-2780, MATH-		
	2790, ELEC-2250.) (3 lecture, 2 laboratory hours or equivalent		
	a week.)		
ELEC 3160	Analog amplification; small-signal modeling of analog		
Electronics II	circuits; differential-amplifier topology; BJT, MOSFET and	P -Previously taken or GA'd the	3
		course	
TBA	JFET differential amplifiers; frequency response and time-		
	dependent circuit behavior; feedback and stability; multistage		
	and power amplifiers; active filters and oscillators; use of CAD		
	in modern transistor circuit design. (Prerequisites: MATH-		
	2780, MATH-2790 and ELEC-2260.) (3 lecture, 1.5		
	laboratory hours and 1 hour tutorial.)		
ELEC 3300	Contemporary digital system design; programmable logic;	E - Advanced digital system	3
Digital Logic Design II	device architectures; reconfigurable computing; design entry	design using VHDL and FPGAs.	-
Dr. M. Khalid	methods; VHDL (Hardware Description Language); Electronic	Prefer students who have taken	
	Design Automation (EDA) tools; combinational and sequential	ELEC 3300 course or it's	
	logic design, implementation using programmable logic	equivalent in their undergraduate	
	devices. (Prerequisites: MATH-2780, MATH-2790 and ELEC-	degree.	
	2170.) (3 lecture, 3 laboratory/tutorial hours or equivalent a	5	
	week.)		
ELEC 8230	Continuous and discrete time systems, state formulation	P -Previously taken or GA'd the	0.5
System Theory	techniques, controlability and observability concepts, and	course	0.5
Dr. S. Erfani	system simulation. Prerequisite: Graduate Student Status. (3	course	
Di. S. Elitani	lecture hours a week.)		
ELEC 8550	This course presents a detailed description of general class of	D. Durani ang la talam an C. A.I.I.tha	
Computer Arithmetic	fixed-radix number systems, floating-point representation,	P -Previously taken or GA'd the	2
Dr. H. Wu	algorithms and architectures for sequential and fast	course	
DI. п. wu			
	computation of multiplication, division and square root		
	extraction, elementary functions, logarithmic and residue		
	number systems, finite field arithmetic operations, error control		
	in arithmetic processors. Course assignments and mini-projects		
	on practical aspects of the course are required. Prerequisite:		
	Graduate Student Status. (3 lecture hours per week.)		
ELEC 8560	This course will cover concepts and protocols which enable	E - Strong knowledge of the	4
Computer Networks	heterogeneous computer networks to work with each other,	OSI/TCP network model.	
Dr. A.H. Sakr	including transport (TCP, UDP), network (IP, IPng), routing	E - Completion of a computer	
	(RIP, OSPF), network management (SNMP, SNMPv2,	networks course at the	
	RMON), and other important protocols like ARP, ICMP, DNS,	undergraduate level.	
	BOOTP, DHCP and HTTP. Advanced topics like Mobile IP,		
	real-time and reservation protocols (RTP, RSVP), IP multicast		
	(IGMP, MBONE) and network security will also be examined.		
	(IGMP, MBONE) and network security will also be examined.		

	Emphasis will be on broad coverage, as well as hands-on		
	programming experiences. Local area networks, performance		
	of queueing, multiple access schemes, IEEE802 standards,		
	wireless LANs and wireless personal area networks will also		
	be covered. Prerequisite: Graduate Student Status. (3 lecture		
	hours per week.)		
ELEC 8600	History and evolution of reconfigurable computing (RC)	P -Previously taken or GA'd the	0.5
Reconfigurable	systems; FPGA-based and multi-FPGA systems, CAD	course	0.5
Computing	mapping tools, run-time reconfiguration, study of recent RC		
TBA	systems from academia and industry targeting a wide range of		
	applications. Literature review and paper presentation on		
	specific topics is also required. The course may require a mix		
	of project and assignments. Prerequisite: Graduate Student		
	Status. (3 lecture hours per week.)		
ELEC 8900-14	Cryptography review, cryptographic protocols, secure	P -Previously taken or GA'd the	15
Special Topics: Secure	electronic transactions, public key certificates and	course	1.5
Electronic Commerce	infrastructures, authentication and authorization certificates,		
Dr. S. Erfani	secure credential services and role-based authorization, mobile		
	code security, security of agent-based systems, electronic		
	payment systems, intellectual property protection, secure time-		
	stamping and notarization, Web service architectures and		
	standards; security and digital rights management in e-business		
	environments.		
ELEC 8900-30	This is a graduate level course designed to provide in depth	E - Already taken this course for	4
Special Topics: Adv.	knowledge in energy storage systems, particularly, batteries.	credit.	4
Energy Storage Systems	This course will introduce important battery management	E - Proficiency with Matlab and	
Dr. B. Balasingam	problems, such as, battery fuel gauging, optimal charging, and	Latex.	
-	cell balancing, and introduce engineering approaches to solve	Latex.	
	them. This course offers hands on experience in battery		
	management through programming examples supported by		
	realistic data.		
	(3 lecture hours a week.)		
ELEC 8900-110	This course introduces the fundamentals of connected vehicle	P -Previously taken or GA'd the	2
Special Topics:	and automated vehicle technology. The course will cover the	course	3
Connected Autonomous	following topics: perception, deep learning, vehicular		
Vehicles	communication, access, routing, intelligent computing,		
Dr. N. Zhang	performance analysis, cybersecurity, and some emerging		
C	topics. (3 lecture hours per week.)		
ELEC 8900-115	This course is specifically offered to the graduate students with	P -Previously taken or GA'd the	0.5
Special topics: Design of	the basic knowledge on electric machines to cover the most	course	0.5
AC Machines	important concepts on design of AC electric machines. Step-		
TBA	by-step procedure to electromagnetically design of AC electric		
	machines e.g., induction machines and Permanent Magnet		
	(PM) machines, is covered in the course by discussing about		
	the principles of magnetic circuits, field distribution and losses		
	in rotating machines.		
Pafar to the timetable (www.	windsor ca/registrar/timetable information) for class and even hours an		

Refer to the timetable (www.uwindsor.ca/registrar/timetable-information) for class and exam hours and location.

Expected GA Duties

GA employees are expected to make themselves available to report for all assigned duties, **both in-person/on-campus and remote/online duties**. Most classes across the University are expected to be held face-to-face on campus or have a face-to-face component. Refer to the current health and safety regulations at https://www.uwindsor.ca/humanresources/safety Assistants cannot commence their GA/TA duties until email confirmation of the approval of their contract is received from Human Resources (email titled "Authorization to Commence GA/TA Duties").

Eligibility requirements:

Successful applicants must be available to attend at the specified time of the course/lab/exams and to report for all assigned duties, which may include both in-person/on-campus and remote/online duties.

GA appointments will be offered to qualified applicants in accordance with the criteria specified in Article 12:03 of the CUPE4580 Collective Agreement.

To be eligible for a Graduate Assistantship you must be a **registered fulltime graduate student**:

- must be registered for the term of work at the time of hiring
- must maintain **fulltime** registration throughout the term and must be in good standing in the degree program

GA appointments cannot exceed **140 hours total for the Fall term period (September 5th to December 31st).** Refer to Articles 12, 13, and 14 of the CUPE 4580 Collective Agreement for eligibility details.

Required Essential Qualifications:

Successful applicants must meet all essential qualifications identified in the course table above.

Application forms are available from the following webpage: <u>Employment | Electrical and Computer Engineering (ECE) (uwindsor.ca</u>) Complete applications form along with a copy of your unofficial transcript must be submitted via email to Danielle Gauthier, Graduate Secretary at <u>gradece@uwindsor.ca</u>

For any questions please contact: Danielle Gauthier

Deadline for receiving applications: Friday, July 12th, 2024

Note that Graduate Assistants must apply each term by the application deadline, in accordance with Article 13:

"With respect to those students who have applied for and been accepted for Assistantships, the Assistant will not be paid for any shortfall of hours at the end of their respective program, provided the University has satisfied its obligation to post available positions each term in writing and on the AAU website and to offer the minimum terms of support in accordance with Article 13:01 (a) & (b) and provided that the Assistant has applied in writing or via e-mail by the application deadline for each term until they have received the minimum terms of support in accordance with Article 13:01 (a) & (b)."

In pursuit of the University of Windsor's Employment Equity Plan, members from the designated groups (Women, Aboriginal Peoples, Visible Minorities, Persons with Disabilities, and Members of Sexual Minorities) are encouraged to apply.

Date posted: June 28th, 2023